

RADICAL SPORTSCARS

MECHANIC'S HANDBOOK – ALL MODELS

VERSION 4.3 - OCTOBER 2015

Radical

TABLE OF CONTENTS

Table of Contents 2
Foreword6
Mechanic's Job Responsibilities over race/test7
Pre-Event Planning7
Mechanic's Responsibilities At Circuit7
Pre Session Checks
Take To Pit Lane9
When Car Comes Into Pits:9
Radical Fastest Laps10
Service Schedule11
Component Lifing Information
Set-up Procedure – New Car13
Corner weight setup
Very Wet Setup Guide14
Drop Height Sheet – SR115
Drop Height Sheet – SR1
Drop Height Sheet – SR3 & SR816
Drop Height Sheet – SR3 & SR8
Drop Height Sheet – SR3 & SR8
Drop Height Sheet – SR3 & SR8
Drop Height Sheet – SR3 & SR8
Drop Height Sheet – SR3 & SR8
Drop Height Sheet – SR3 & SR8
Drop Height Sheet – SR3 & SR8
Drop Height Sheet – SR3 & SR816Drop Height Sheet- RXC (All Models)17Drop Height images - RXC (ALL MODELS)18Roll Bar Size Chart.20SR3 and SR8 Roll Bar Sizes:20RXC Roll Bar Sizes:20Handling & Setup Guide21Some Examples of Driver Feedback21Radical 3-Way Dampers.23

SIMMS' MEDAL NORDSCHLEIFE WINNER LAP RECORD HOLDER

Page 2

Pre-session warm up26
Tyre Safety Advice & Other Information27
Tyre Saftey Advice – Deflection
Advice on the handling of race tyres in cold temperatures28
Tyre Saftey Advice –
Tyre Wear Patterns
Golden Rules
Cold Tear31
Very well used front tyre32
Recommended Gear Ratio Chart
SR3 Gear Ratio Chart34
SR3 Gear Drive Unit – exploded diagram35
SR8 Gear Chart – Hypoid Gearbox
RPE 6 speed Transaxle Gear Ratios for RADICAL SR8 hypoid and Non-Hypoid37
Non-hypoid gear ratio list:
Hypoid gear ratio list:
Hypoid gear ratio list:
RPE 6 speed Transaxle Gear Ratios For RADICAL SR8 (HYPOID)
RPE 6 speed Transaxle Gear Ratios For RADICAL SR8 (HYPOID)
RPE 6 speed Transaxle Gear Ratios For RADICAL SR8 (HYPOID)
RPE 6 speed Transaxle Gear Ratios For RADICAL SR8 (HYPOID) 38 SR8 Gear Ratio Chart – Hypoid – Short. 39 SR8 Gear Ratio Chart – Hypoid – Medium. 39 SR8 Gear Ratio Chart – Hypoid – Medium. 39 SR8 Gear Ratio Chart – Hypoid – Long. 40
RPE 6 speed Transaxle Gear Ratios For RADICAL SR8 (HYPOID) 38 SR8 Gear Ratio Chart – Hypoid – Short. 39 SR8 Gear Ratio Chart – Hypoid – Medium. 39 SR8 Gear Ratio Chart – Hypoid – Medium. 39 SR8 Gear Ratio Chart – Hypoid – Long. 40 SR8 Gear Ratio Chart – Hypoid – Extra Long . 40
RPE 6 speed Transaxle Gear Ratios For RADICAL SR8 (HYPOID) 38 SR8 Gear Ratio Chart – Hypoid – Short. 39 SR8 Gear Ratio Chart – Hypoid – Medium. 39 SR8 Gear Ratio Chart – Hypoid – Medium. 39 SR8 Gear Ratio Chart – Hypoid – Long. 40 SR8 Gear Ratio Chart – Hypoid – Extra Long . 40 SR8 (hypoid) Gearbox – exploded drawing . 41
RPE 6 speed Transaxle Gear Ratios For RADICAL SR8 (HYPOID) 38 SR8 Gear Ratio Chart – Hypoid – Short. 39 SR8 Gear Ratio Chart – Hypoid – Medium. 39 SR8 Gear Ratio Chart – Hypoid – Medium. 40 SR8 Gear Ratio Chart – Hypoid – Long. 40 SR8 Gear Ratio Chart – Hypoid – Extra Long 40 SR8 Gear Ratio Chart – Hypoid – Extra Long 40 SR8 (hypoid) Gearbox – exploded drawing 41 SR8 Gearbox Parts List 42
RPE 6 speed Transaxle Gear Ratios For RADICAL SR8 (HYPOID) 38 SR8 Gear Ratio Chart – Hypoid – Short. 39 SR8 Gear Ratio Chart – Hypoid – Medium. 39 SR8 Gear Ratio Chart – Hypoid – Medium. 39 SR8 Gear Ratio Chart – Hypoid – Long. 40 SR8 Gear Ratio Chart – Hypoid – Extra Long 40 SR8 Gear Ratio Chart – Hypoid – Extra Long 40 SR8 Gear Ratio Chart – Hypoid – Extra Long 40 SR8 Gearbox Parts List 41 SR8 Gearbox Parts List 42 RXC Gearbox Ratio Chart and Part numbers 43
RPE 6 speed Transaxle Gear Ratios For RADICAL SR8 (HYPOID)38SR8 Gear Ratio Chart – Hypoid – Short.39SR8 Gear Ratio Chart – Hypoid – Medium.39SR8 Gear Ratio Chart – Hypoid – Long.40SR8 Gear Ratio Chart – Hypoid – Extra Long40SR8 Gearbox Parts List41SR8 Gearbox Parts List42RXC Gearbox Ratio Chart and Part numbers43RXC 7-speed – Exploded Diagram.44

Life Data Software
Life ECU Data Explained51
Life View Software53
Life ECU Parameters Explained (All Models)54
Aim Data Software55
Race Studio 255
Race Studio Analysis55
Downloading Data from the AIM Data logger (MXL Pista Dash)
Viewing previously downloaded AIM data in Race Studio Analysis
Torque Settings
SR3 engine & gear drive unit58
SR8 engine & gearbox59
Suspension Components60
Brake discs and calipers61
brake discs and calipers
RXC Torque Settings
RXC Torque Settings62
RXC Torque Settings
RXC Torque Settings62Lubricant Guide63Sensor and actuator Calibration Guide – All models64Gear Actuator Setup - SR8 and RXC64Gear Position Sensor Setup64Wheel Speed sensor installation and setup – all models65Jenvey Drive-By-Wire Throttle Bodies Tps Setup66Power Steering setup and calibration – Rxc and RXC Spyder68
RXC Torque Settings
RXC Torque Settings
RXC Torque Settings

Paddle shift Trouble Shooting Guide - Downshift74
Contact Details for Key Staff at Radicalsportscars75
Appendices76
Pre Race / Test CheckList
Overnight Checklist78
Workshop Check Sheet79
SR1 Setup sheet
SR3 RS Setup Sheet
SR3 RSX setup sheet
SR8 Setup sheet
RXC / RXC Spyder Setup Sheet87
RXC Fuse board layout
Document revision history90

SIMMS' MEDAL WINNER LAP RECORD HOLDER

NORDSCHLEIFE

FOREWORD

This Race Mechanics Handbook has been created to guide all engineers - irrespective of ability or experience – through the procedures and services that are required to maintain the entire range of Radical cars to a standard we believe customers demand and deserve.

These pages contain expertise from our fifteen years of production, testing and racing the cars, as well as information direct from partners and suppliers. If this book is followed diligently and sympathetically it will improve our customer's appreciation and satisfaction of our world leading product range.

This book is therefore also designed to be used by car owners as well as technicians.

Our aim is to ensure every customer is happy and they all enjoy our products, this book will help see that goal realised.

Phil Abbott Founder and Managing Director

SIMMS' MEDAL NORDSCHLEIFE WINNER LAP RECORD HOLDER

Page 6

MECHANIC'S JOB RESPONSIBILITIES OVER RACE/TEST

PRE-EVENT PLANNING

- Departure and travel plans should be finalised, with all others involved knowing purpose of test/race.
- Mechanic who is charge of running the car should find out:-
 - Noise limits, and take the necessary silencers to pass noise tests.
 - Session times and where and when signing on is to direct the driver when necessary.
- All spares should be checked and packed, with the person who is in charge of the car taking responsibility for test parts and any extras that may be required.
- Mechanic running the car should have all of the cars history and specific car parts, such as fuel dump tanks, dive planes and have tyres sorted for test/race.
- As and when possible have structured test plans for track time available.

MECHANIC'S RESPONSIBILITIES AT CIRCUIT

- Follow timetable as closely as possible.
- Make sure car is noise tested as soon as possible.
- Ensure car is warmed up and ready to go 10 minutes prior to session (Oil at 50 °C min and water at 70 °C min).
- Ensure driver(s) is where they should be signed on, briefings attended and ready in good time for the session.
- Ensure driver is fully aware of any new parts on the car, whether it is brake pads, discs, tyres or development parts.
- Ensure driver knows the procedure for running any new parts, whether or not they needed bedding in, and if so how it should be done and for what length of time.
- Ensure driver knows what is expected of them, whether it's testing of new parts, bedding-in new parts or setting the car up.
- Ensure a full log of car history is kept, including fuel used, parts used and replaced, running time of car and development parts, and reasons for changing parts.
- Make sure any failed parts are kept for inspection, with technical staff notified where possible.
- With parts failures and development parts, and any other issues, be sure to follow correct channels and report to correct people as soon as possible i.e. technical team notified.
- Make sure the car is downloaded, and check all critical values are within parameters, including:-
 - Oil temp between 70°C and 120°C
 - Car is charging at 13V to 14V

SIMMS' MEDAL NO WINNER LAP R

NORDSCHLEIFE LAP RECORD HOLDER

- Water temp between 60°C and 95°C
- Fuel pressure around 3 bar etc

Make sure this information is available when necessary.

- Ensure all number 2 mechanics have a structured job list to work to, and involve them as much as possible on decisions to make changes to the car so that they have a better understanding of how the car works.
- Appear professional at all times, such as keeping work areas tidy as possible, directing drivers to where their kit should be stored (i.e. not in working areas)
- Once own car is prepped for next session, and all aspects of car are working, i.e. data logger, radio systems etc., help out others within the team to get cars ready and out on time.
- Try to communicate with others around you so as many people as possible are aware of a situation.
- Any extra jobs, other than standard prep, required when the car returns to the factory should be noted, so that whoever preps the car will be aware of the required work.
- Above all, carry out procedures with the Radical Team in mind, acting as a single team and representing the team in as professional a manner as possible, whether conducting private tests or away assisting overseas clients and/or distributor.

PRE SESSION CHECKS

- 1. Tyre pressure set on all wheels, including spares (and wets)
- 2. Levels Oil, water and brake/clutch fluid
- 3. Wheels tight
- 4. Correct setup for conditions
- 5. Oil temp above 50°C
- 6. Gearbox warmed up (SR8 only)
- 7. Fire extinguisher active/pin removed
- 8. Correct amount of tape on the radiators
- 9. Correct fuel level
- 10. Check for fluid leaks Fix or Report

Pre-Race/Test-, Overnight- and Workshop Checklist can be found in the Appendix

SIMMS' MEDAL NORDSCHLEIFE WINNER LAP RECORD HOLDER

TAKE TO PIT LANE

- 1. Spare wheels and wets if required
- 2. Radio if required
- 3. Tyre pressure gauge
- 4. Tyre temperature gauge
- 5. Lap time sheets and stop watch
- 6. Pit board and numbers
- 7. Jump battery (SR8 only)
- 8. Tools bag Allen keys, spanners, tank-tape etc
- 9. Air-line(s), lance, air gun
- 10. Spare dive planes and roll bars
- 11. Spare wheel nuts and clips
- 12. Water for the driver

WHEN CAR COMES INTO PITS:

- 1. Is driver ok? (Any setup changes etc...)
- 2. Tyre Pressures
- 3. Tyre Temperatures
- 4. Oil & Coolant Temperatures
- 5. Check for fluid leaks Fix or Report
- 6. Blockages in intake grilles/ducts
- 7. Collect data

SIMMS' MEDAL NORDSCHLEIFE WINNER LAP RECORD HOLDER

RADICAL FASTEST LAPS

Track	SR1	Date	Driver	SR3	Date	Driver	SR8	Date	Driver
Anglesey				1.26.088	10.9.11	James Abbott			
Ascari	1.28.5	10.3.14	Mark Crader	2.04.503	10.3.14	Bradley Ellis	2.02.302	9.3.14	David Hansson
Barcelona				1.50.846	4.11.12	Rob Wheldon	1.45.682	2.11.14	Bradley Smith
Brands GP				1.24.953	15.9.12	Matt Bell	1.22.752	4.6.11	Alex Brundle
Brands Indy	49.56	1.6.13	Colin Noble	45.192	14.8.10	Alex Kapadia	44.029	14.8.10	Ross Kaiser
Cadwell Park	1.30.83	31.8.13	Colin Noble	1.23.041	11.10.14	Lewis Plato			
Castle Combe				1.04.105	2.8.14	Phil Keen			
Dijon				1.18.889	10.10.09	Nicolas Powilewicz	1.14.318	10.10.09	Stuart Moseley
Donington Park Nat				1.06.532	25.9.10	Rob Wheldon	1.02.974	25.9.10	Rob Huff
Donington Park GP	1.39.85	20.9.14	Dave Morgan	1.29.327	7.10.12	Bradley Ellis	1.25.735	7.10.12	James Littlejohn
Hungaroring				1.49.407	21.8.10	Marco Cencetti	1.45.185	6.7.14	Tristan Viidas
Imola				1.48.703	2.7.11	Stuart Moseley	1.43.620	2.7.11	Per Staaf
Monza				1.56.269	26.4.08	Lionel Stebler	1.47.250	28.9.14	Bradley Smith
Nürburgring				2.00.568	27.6.10	Marco Cencetti	1.57.184	4.5.14	Tristan Viidas
Oulton Park Int	1.45.66	6.7.13	Colin Noble	1.36.143	14.5.11	Stuart Moseley	1.33.328	28.7.12	Stuart Moseley
Oulton Park Island				1.21.876	31.5.10	Stuart Moseley	1.18.350	26.5.07	Stuart Moseley
Paul Ricard				2.09.790	21.7.12	Rob Wheldon	2.05.421	21.7.12	James Littlejohn
Pembrey				54.484	26.6.10	Colin Millar			
Portimao				1.49.550	5.3.13	James Abbott	1.44.494	2.8.09	Rob Wheldon
Red Bull Ring				1.36.743	26.8.12	Rob Wheldon	1.30.128	26.8.12	Stuart Moseley
Rockingham				1.18.274	10.4.10	Rob Wheldon	1.15.947	10.4.10	Ross Kaiser
Silverstone GP				2.03.692	16.4.11	Stuart Moseley	1.59.037	17.8.14	James Littlejohn
Silverstone National				55.222	12.5.12	Bradley Smith			
Snetterton 300	1.58.63	26.10.13	Colin Noble	1.49.381	16.10.11	Stuart Moseley	1.44.730	10.3.12	Bradley Ellis
Spa				2.26.385	8.5.10	Marco Cencetti	2.16.774	8.5.10	Ross Kaiser
Thruxton				1.11.943	28.8.10	Stuart Moseley	1.09.175	28.8.10	Ross Kaiser
Yas Marina				2.14.034	16.10.10	Damien Faulkner	2.09.261	16.10.10	Ben Bailey
Zandvoort				1.40.945	24.7.10	Marco Cencetti	1.37.748	24.7.10	Dean Stoneman

SIMMS' MEDAL NORD WINNER LAP RECO

NORDSCHLEIFE LAP RECORD HOLDER

Page 10

SERVICE SCHEDULE

As the performance of our cars increases and the number of hours racing the cars grows, we are able to more accurately predict the lifespan of a car's components. Please see over, the revised 'Radical Lifing Information Chart'.

The chart gives the recommended life expectancy of components under 'normal, on-track racing conditions'. If some of your racing time is done 'off-track' or you hit kerbs, pot holes or other cars – hard, then you will need to consider reducing the timescales recommended. On the other hand, more 'gentle' trackday use will obviously extend the recommended time!

The recommended life expectancies in no way represent a parts warranty, due to the unpredictable and uncontrolled use of these racing car components Radical will not be held responsible or accountable for any parts failure. This information is provided solely as a guide to increase the safety of the cars.

	RPE 1500 (Long Stroke)	-		RXC Spyder 3.o V8
Engine	40 hours	45 hours	40 hours	40 hours
Drive Unit/Gearbox	45 hours	45 hours	40 hours	40 hours
Fuel Filter	Every Engine Refresh	Every Engine Refresh	Every Engine Refresh	Every Engine Refresh
Service Injectors	Every Engine Refresh	Every Engine Refresh	Every Engine Refresh	Every Engine Refresh
Caliper Seals	6 months	6 months	4 months	4 months
Spark Plugs	Every Engine Refresh	Every Engine Refresh	Every Engine Refresh	Every Engine Refresh
Air Compressor	80 hours	80 hours	80 hours	80 hours

SIMMS' MEDAL NORDS WINNER LAP RECOR

NORDSCHLEIFE LAP RECORD HOLDER

Page 11

COMPONENT LIFING INFORMATION

Model		SR1		SR3 RS	S	R3 RSX		SR8	RX	C Spyder	RX	(C 3.7 V6	RX	C 3.5 V6T	F	RXC V8
	Hou rs	Mileage (km)	Hour s	Mileage (km)												
Engine (warranty)	60	N/A	40	N/A	45	N/A	40	N/A	40	N/A	N/A	N/A	N/A	N/A	40	N/A
rebuild																
Gearbox/ GDU	100	8000	50	4000	50	4000	50	4000	50	4000	60	5000	50	4000	50	4000
inspect/ rebuild																
Fr Uprights inc. hubs	100	8000	80	8000	80	8000	80	8000	100	10000	100	10000	100	10000	100	10000
replace																
Rr Uprights inc. hubs	100	8000	100	9000	100	9000	90	9000	100	10000	100	10000	100	10000	100	10000
replace																
Standard driveshafts	60	5500	50	4500	50	4500	80	8000	100	8000	100	8000	100	8000	100	8000
replace																
H-D driveshafts		N/A	100	10000	100	10000		N/A								
replace																
Suspension bushes	40	3500	30	3000	30	3000	20	2000	20	2000	40	4000	30	3000	20	2000
replace																
Suspion rose joints	5-10	500-1000	5-10	500-1000	5-10	500-1000	5-10	500-1000	5-10	500-1000	5-10	500-1000	5-10	500-1000	5-10	500-1000
inspect																
Front wishbones	100	8000	100	10000	100	10000	80	8000	100	10000	100	10000	100	10000	100	10000
replace																
Rear wishbones	100	8000	100	10000	100	10000	80	8000	100	10000	100	10000	100	10000	100	10000
replace																
Brake discs	60	5000	40	3500	40	3500	20	2000	20	2000	20	2000	20	2000	20	2000
replace																
Shock absorbers	40	3000	40	3500	40	3500	40	3500	40	3500	40	3500	40	3500	40	3500
dyno check																
Master cylinders	100	10000	100	10000	100	10000	100	10000	100	10000	100	10000	100	10000	100	10000
replace																
Chain & Sprocket	40	3000	N/A	N/A												
replace																

SET-UP PROCEDURE – NEW CAR

- 1. Check front pushrod lengths are equal & front springs have 3 turns of pre-load
- 2. Check rear spring platform-to-cap distance is equal (approx. 125mm)
- 3. Ballast with 8oKg (1oKg in footwell by the pedals, 7oKg in seat) unless specific driver weight called for on build sheet
- 4. Lock steering to straight ahead using dummy steering wheel
- 5. Set tyre pressure to hot pressure from setup sheet
- 6. Disconnect front & rear anti-roll bars
- 7. Check dampers are set to minimum all round
- 8. Bounce & roll car
- 9. Check drop heights and adjust average of front & rear to be within 1mm of target
- 10. Set cambers (+ or 0.1° from target)
- 11. Set toes (+ or 0.5mm from target)
- 12. Roll car off platform, turn on scales and zero
- 13. Roll car back onto platform, repeat bounce & roll
- 14. Check corner weights. Target is within 10Kg across front, and within 2% for diagonals
- 15. Adjust using rear platforms only
- **16.** Re-adjust drop heights equally on front pushrods and rear spring platforms to achieve target. (The drop height will probably not be equal, due to the offset seating position, so target drop height should be an average of the left & right readings.)
- 17. Re-connect anti-roll bars making sure there is no pre-load
- 18. Set dampers
- 19. Turn off scales
- 20. Front diffuser height is set at the middle wooden skid first, at the stated height for the car model (or not below 40mm) than at the side skids to ensure the front is level. Then set a camber gauge on the side skirts and make the diffuser top level from front-to-rear and then drill and rivet the rear support bracket.

ALL Setup Sheets can be found in the Appendix

CORNER WEIGHT SETUP

One of the most important factors is to ensure that the front corner weights are as equal as possible. The cross weight is not as crucial in comparison. (The offset driving position of the driver will usually mean that the weight cannot be made exactly equal.)

To adjust the front corner weights, raise or lower the diagonal rear.

The maximum difference in front weights should be no more than 10kg (22lb

VERY WET SETUP GUIDE

Dam	Sp	orings	/ pre-	Dampers				
Bump LS	5 softer	Front anti-roll bar				Bump LS	5 softer	
Bump HS	10 softer		Next softest			Bump HS	10 softer	
Rebound	5 softer	5Nm softer,			5Nm softer,	Rebound	5 softer	
		same P/L			same P/L			

Corner	Weights	/ Rid	e Height
Do <u>NOT</u> change		$\overline{\mathbf{A}}$	Do <u>NOT</u> change

Do <u>NOT</u>

change

Dan	npers	R	ear anti-roll	Dampers		
Bump LS	5 softer		Next		Bump LS	5 softer
Bump HS	10 softer	10Nm softer	Next softest	10Nm softer	Bump HS	10 softer
Rebound	5 softer	Jonter		Jone	Rebound	5 softer

Brake Balance
3 turns to rear

Do

NOT

change

DROP HEIGHT SHEET – SR1

Front Ric	le Height	Rear Ride Height				
Drop (mm)	Actual (mm)	Drop (mm)	Actual (mm)			
180	56	173	56			
179	57	172	57			
178	58	171	58			
177	59	170	59			
176	60	169	60			
175	61	168	61			
174	62	167	62			
173	63	166	63			
172	64	165	64			
171	65	164	65			
170	66	163	66			
169	67	162	67			
168	68	161	68			
167	69	160	69			
166	70	159	70			
165	71	158	71			
164	72	157	72			
163	73	156	73			
162	74	155	74			
161	75	154	75			
160	76	153	76			

"to tyre"

DROP HEIGHT SHEET – SR ₃ & SR8										
	FRONT			REAR						
	To front bush of RTWB									
Front Drop Height	Measuring to Roc Ride Height	Calculated Ride height under lowest point on chassis		Rear Drop Height	Ride Height					
153mm	90mm	70mm		210mm	8omm					
154mm	89mm	69mm		211MM	79mm					
155mm	88mm	68mm		212MM	78mm					
156mm	87mm	67mm		213mm	77mm					
157mm	86mm	66mm		214MM	76mm					
158mm	85mm	65mm		215mm	75mm					
159mm	84mm	64mm		216mm	74mm					
160mm	83mm	63mm		217mm	73mm					
161mm	82mm	62mm		218mm	72mm					
162mm	81mm	61mm		219mm	71mm					
163mm	8omm	6omm		220mm	70mm					
164mm	79mm	59mm		221MM	69mm					
165mm	78mm	58mm		222mm	68mm					
166mm	77mm	57mm		223mm	67mm					
167mm	76mm	56mm		224mm	66mm					
168mm	75mm	55mm		225mm	65mm					
169mm	74mm	54mm		226mm	64mm					
170mm	73mm	53mm		227mm	63mm					
171MM	72mm	52mm		228mm	62mm					
172mm	71MM	51mm		229mm	61mm					
173mm	70mm	50mm		230mm	6omm					
174mm	69mm	49mm		231mm	59mm					
175mm	68mm	48mm		232mm	58mm					
176mm	67mm	47mm		233mm	57mm					
177mm	66mm	46mm		234mm	56mm					
178mm	65mm	45mm		235mm	55mm					
, 179mm	64mm	44mm		236mm	54mm					
180mm	63mm	43mm		237mm	53mm					
181mm	62mm	42mm		238mm	55 52mm					
182mm	61mm	41mm		239mm	51mm					
183mm	6omm	40mm		240mm	50mm					
184mm	59mm	39mm		241mm	49mm					
185mm	58mm	39mm		242mm	49mm 48mm					
186mm	57mm	37mm		•						
100000	5/1111	3/11111		243mm	47mm					

Chassis rake will be the difference between "Calculated Ride height" & Rear "Ride Height" Measuring bar is inverted between front & rear measurements.

DROP HEIGHT SHEET- RXC (ALL MODELS)

RXC drop heights are measured using the same drop height bar as all of the other models. This is constructed from 2 inch by 1 inch box section with an additional 2inch by 1 inch box section welded below to give clearance.

Note: On the RXC the drop height bar is used the same on the front as the rear. This is different to the other models (SR₃, SR₈, SR₁). Please see the following pictures to show where the drop heights are measured to.

e Height Actual	Drop Height Slicks	Drop Height Setup Whe		
70	276	350		
71	275	349		
72	274	348		
73	273	347		
74	272	346		
75	271	345		
76	270	344		
77	269	343		
78	268	342		
79	267	341		
80	266	340		
81	265	339		
82	264	338		
83	263	337		
84	262	336		
85	261	335		
86	260	334		
87	259	333		
88	258	332		
89	257	331		
90	256	330		
91	255	329		
92	254	328		
93	253	327		
94	252	326		
95	251	325		
96	250	324		
97	249	323		
98	248	322		
99	247	321		
100	246	320		
101	245	319		
102	244	318		
103	243	317		
104	242	316		
105	241	315		
106	240	314		
107	239	313		
108	238	312		
109	237	311		
110	236	310		

DROP HEIGHT IMAGES - RXC (ALL MODELS)

Front Drop Height plate

Rear Drop Height Forward Wing Bobbin

SIMMS' MEDAL NORDSCHLEIFE WINNER LAP RECORD HOLDER

Page 18

SIMMS' MEDAL NORDSCHLEIFE WINNER LAP RECORD HOLDER

QD77-2

ROLL BAR SIZE CHART

SR3 AND SR8 ROLL BAR SIZES:

FRONT			
SOFT	5/8″	15.8mm	
MEDIUM	3⁄4″	19.0mm	
HARD	7/8″	22.2MM	GOLD
EXTRA HARD	7/8″	22.2MM	BLACK
REAR			
SOFT	1/2″	12.7MM	
MEDIUM	5/8″	15.8mm	
HARD	3/4″	19.0mm	
EXTRA HARD	7/8″	22.1MM	GOLD
SUPER HARD	7/8″	22.1MM	BLACK
	•		

RXC ROLL BAR SIZES:

FRONT		
SOFT	7/8″	22.2MM
MEDIUM	1″	25.4mm
HARD	1 1/8″	28.6mm

REAR

SOFT	5/8″	15.9mm
MEDIUM	3/4″	19.0mm
HARD	7/8″	22.2MM

Adjustments can be made for each thickness of rollbar using the 5 holes on the rockers. This range of adjustment is explained in the pictures below. The rollbar should always be re-connected with the driver weight in the car and there should be no pre-load on the bolts.

HANDLING & SETUP GUIDE

For ALL handling issues the first and most important thing to check is TYRES:-

- Pressure
- Condition
- Temperature

Pressure for Dunlop tyres, should be in the range of 28psi to 30psi hot, the working temperature is minimum 70°c and ideally around 90°c. Temperature spreads, across the tyre tread **must not exceed** 15°c on the front tyres and 10°c on the rear tyres. Over 110°c and the tyre is beginning to overheat. The condition can be more complicated; if you know that the tyres have a lot of miles or have had many heat cycles then, before anything else, try another set.

Also look at the tyres for:-

- Graining or heavy wear
- Unusual colouring
- Is there a lot of 'pickup'?

All these are a good indicator of what is causing problems.

The next priority is to talk with the driver and make a circuit map, if possible, with information on each part of every corner. You can then decide if the problem is slow, medium or fast corners or everywhere, and if it is entry, mid corner, or exit. There are always various options to rectify any handling issue and all will have a downside, but we have to try and chose the best for each corner bearing in mind which the most important corners are, and which problems are caused by the nature of the circuit.

It is important to understand the difference between understeer and oversteer.

- <u>**Understeer**</u> is when the front tyres have insufficient grip to make the car turn so more steering lock is applied.
- **Oversteer** is the rear tyres not having enough grip.

If you have entry and mid-corner understeer, you will probably get exit oversteer, as you will have applied too much lock and then when the 'G-force' and speed have dropped and you start to apply power it will make the car snap to oversteer, and this is what the driver remembers so if you try to cure the oversteer it will probably get worse.

This is why it is very important to ask the driver a lot of questions before deciding what to do.

SOME EXAMPLES OF DRIVER FEEDBACK

Driver Feedback	Cause
"Slow speed entry understeer"	The most common cause is too soft front Nik Link or springs, or front ride height too high, also it could be too little front rebound.
"Slow speed entry oversteer"	If braking from high speed to a slow corner the problem is probably caused by the car pitching too much, so more rear toe in or lowering the rear ride height will help.
	Increasing the rear rebound, if it is entering from medium or low-speed then softer rear 'Nik-link' <i>or</i> maybe springs.
	Reducing rear camber will increase rear grip at slow-speed, so check the rear tyre temps.

SIMMS' MEDAL NORDSCHLEIFE WINNER LAP RECORD HOLDER

Page 21

- With all medium to high speed entry and mid-corner problems, you should first try to solve with an increase or decrease in front or rear downforce. This can be achieved with dive planes and rear wing flap or with ride-height adjustment. In general, a lower ride height gives more downforce, and will also increase mechanical grip.
- If downforce or ride height is not the answer, then try an increase in camber to increase high-speed grip, but this in-turn will decrease slow-speed grip.

For example: **If you have high-speed mid-corner oversteer**, then increasing the camber should help, but it will decrease traction out of slow corners.

• **Corner exit problems at all speeds** are generally a result of what has happened in the mid-corner. However, out of slow-speed corners, traction can be improved by reducing rear camber (as above) or softening the rear 'Nik-link' or springs. Reducing rear compression damping, can help as well.

If you make the opposite change to the front of the car it will also have a similar effect.

In fast corners going stiffer with springs and maybe bars will generally increase grip.

- Increasing 'toe-out' at front and 'toe-in' at the rear will increase stability and tyre temps. Increasing spring rates and tyre pressure will also increase tyre temperatures and tyre wear.
- **Damping** has many functions, but primarily it is used to keep the tyre in contact with the track by controlling the spring and chassis movement frequencies, so in general you want to keep the springs and dampers as soft as possible, but stiff enough to control the roll and pitch of the car. Then, the balance is controlled by the roll and spring rate differences front to rear and aero levels.
- The adjustments on the dampers are called low or high speed compression and rebound. Low or high speed refers to damper piston speed, <u>not</u> car speed.

For example; on entry to a high-speed corner, the lateral load transfer is relatively slow as you gradually apply more lock, so the damper movement is slow. Whereas if you go over a kerb at any speed the damper movement is fast, braking and turn-in to a slow corner is much more aggressive than in a fast corner, therefore the damper movement is faster, but usually not as fast as over kerbs.

The damping force increases with the speed of the piston:-

- If you make the high-speed adjustment too stiff, the damper will not move fast enough and the car will bounce rather than ride the kerb.
- If you have the low-speed adjustment too soft, the car will not respond to driver inputs quick enough in the corners.
- Increasing rebound is a good way to increase grip, but it will also increase ride 'harshness', which can make the car skip across the track. There are no simple answers, but damping adjustments are quick to do in the pit lane and will give you more information to help resolve the issues later.

RADICAL 3-WAY DAMPERS

Basic setting:

Front:	A. Rebound
	B. High speed bump compression
	C. Low speed bump compression

A – Rebound:

The rebound controls the speed of the damper's extension. The more rebound resistance you add, the slower the damper will return out. This can be used on the front to fix mid-corner understeer, and on the rear to aid traction

B – *High speed bump compression:*

High speed bump compression (refers to the speed of the piston rod into the damper) controls the high frequency compressions of the damper. In simple terms it controls how the car reacts to small bumps and curbs. We recommend using no more than +15 clicks from soft.

C – Low speed bump compression:

Low speed bump compression controls how slow or fast the damper reacts under compression. Increasing the low speed bump will have a similar (though smaller) effect to increasing the spring rate.

SPRING RATES

SR3										Ride	frequ	encie	s								
Hz	3.5	3.6	3.7	3.8	3.9	4	4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5	5.1	5.2	5.3	5.4	5.5
Spring Rate Front	80	47	50	53	56	58	61	64	68	71	74	77	81	84	88	91	95	99	103	107	111
N/mm																					
Spring Rate Rear	124	68	72	76	80	84	89	93	97	102	107	112	116	121	127	132	137	143	148	154	159
SR8										Ride	frequ	encie	s								
Hz	3.5	3.6	3.7	3.8	3.9	4	4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5	5.1	5.2	5.3	5.4	5.5
Spring Rate Front	49	52	55	58	61	64	67	71	74	78	81	85	89	92	96	100	104	109	113	117	121
N/mm																					
Spring Rate Rear	85	90	95	100	105	111	117	122	128	134	140	147	153	160	167	173	180	188	195	20 2	210
PR6										Ride	frequ	encie	s								
Hz	3.5	3.6	3.7	3.8	3.9	4	4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5	5.1	5.2	5.3	5.4	5.5
Spring Rate Front	42	45	47	50	52	55	58	61	64	67	70	73	76	79	83	86	90	93	97	100	104
N/mm																					
Spring Rate Rear	50	53	56	59	62	66	69	72	76	79	83	87	90	94	98	102	107	111	115	119	124
SR5										Ride	frequ	encie	s								
Hz	3.5	3.6	3.7	3.8	3.9	4	4.1	4.2	4.3	4.4	4.5	4.6	4.7	4.8	4.9	5	5.1	5.2	5.3	5.4	5.5
Spring Rate Front	51	54	57	60	63	66	69	73	76	80	84	87	91	95	99	103	107	112	116	120	125
N/mm																					
Spring Rate Rear	72	76	80	84	89	93	98	103	108	113	118	124	129	135	140	146	152	158	164	170	177

Ideally front ride frequency should be 10% greater than the rear, and the range is 3.5Hz to 5.5Hz for Radicals.

For example; a bumpy track with no fast corners would not require much downforce and would need soft springs so for an SR3 maybe 4Hz front and 3.6Hz rear.

For a normal track such as Silverstone GP quite high downforce and not too bumpy, you would look at 5Hz front and 4.5Hz rear or stiffer.

BRAKE BIAS SETTINGS

This Brake Bias guide is universal to all Radical models fitted with a Brake Bias Adjuster.

		PERCENTAGE BRAKE BIAS										
FRONT BRAKE PRESSURE	51	52	53	54	55	56	57	58	59			
		REAR BRAKE PRESSURE										
20	19.2	18.5	17.7	17.0	16.4	15.7	15.1	14.5	13.9			
25	24.0	23.1	22.2	21.3	20.5	19.6	18.9	18.1	17.4			
30	28.8	27.7	26.6	25.6	24.5	23.6	22.6	21.7	20.8			
35	33.6	32.3	31.0	29.8	28.6	27.5	26.4	25.3	24.3			
40	38.4	36.9	35.5	34.1	32.7	31.4	30.2	29.0	27.8			
45	43.2	41.5	39.9	38.3	36.8	35.4	33.9	32.6	31.3			
50	48.0	46.2	44.3	42.6	40.9	39.3	37.7	36.2	34.7			

WET START POINT

DRY START POINT

To adjust brake bias, press the brake pedal and observe the front and rear pressure shown on the dash. Then move the adjuster after releasing the pedal to give the required percentage. Then re-check the setting on the dash.

The yellow highlighted values are a good starting point for DRY, while the blue are for WET.

For example - If the dash is showing 35bar front and 26.5 rear, using the chart above this is about 57%. This means you have too much front brake bias, and you must turn the adjuster to the rear (approx. 1 full turn = 1%), and then recheck the reading on the dash. Final adjustment will be made by the driver on track to suit their style of driving

BRAKE DISC BEDDING

All cast iron brake discs for competition use need to be bedded-in to ensure heat stabilisation and improve resistance to cracking. Cracks or warping can occur during the first few heavy stops if careful bedding is not carried out.

- If ducts are fitted they should be ¾ blanked off.
- Use previously bedded pads.
- For a minimum of 15 Km use brakes gently at first from initially low speeds progressively raise speed to normal racing speed and gradually increase in pedal pressure.

For the final 2 or 3 applications brakes can be used quite heavily (above 40 bar pressure). The braking potential of the car will start to fade, this is a sign that the bedding procedure is complete. 1 cooling down lap with moderate brake pressure is advisable before stopping the car.

It is possible to pick up a vibration or 'judder' through the brake pedal. This is due to the disk bell and disk becoming aligned for the first time; this is not a process that can be simulated in the build of the car. It is therefore very important that if the driver feels they have brake judder they continue to build up brake pressure and heat in the disk. And not to stop or decrease pedal pressure, to do so has the potential to make the vibration worse.

• After the initial bedding process is complete, allow the brakes to cool. If the car is fitted with a handbrake, do not apply it at this time.

If AP Racing thermal paints are used then only the green paint (430°C) should have fully turned to white and maybe also just the Orange paint (560°C) on the outside edges of the discs during the bedding procedure. If fitted, brake pressures can be used to monitor the bedding in procedure.

PRE-SESSION WARM UP.

With cast iron discs, brake pressures should not exceed 20 bar during the out laps from cold, even with pre-bedded discs. This includes the start of each track day session, practice session, and warm up of a race.

This is to prevent heat shocking the disc and causing cracking.

Heat shocking occurs when the disc is taken from ambient temperature to 600°C very rapidly i.e. heavy braking on the out laps.

TYRE SAFETY ADVICE & OTHER INFORMATION

- Ensure minimum hot pressures are adhered to! (see tables below)
- Calibrate your pressure gauges with *DUNLOP* personnel.
- Do not bleed hot pressures on the car without consultation with **DUNLOP** personnel.
- Fit valve dust caps throughout.
- Cold pressures should only be set on tyres that have been shaded from direct sunlight. Do not bleed tyres as the ambient temperature rises!
- Temperature spreads across the tyre tread **must not exceed:** If 15°C on the left front tyre and I 10°C on the left rear tyre. (Temperature measurements to be made at the centre of the tread and 25-30 mm from each edge.)
- Please identify your rims, clean them and remove any centre caps before bringing them for fitting.
- Avoid hitting kerbs with cold tyres as pressures are still building up.

RXC (all models)		Cold (gu	ide only)		HOT (minimum)					
	17 İ	nch	18 i	inch	17 İ	nch	18 inch			
	PSI	BAR	PSI BAR		PSI	BAR	PSI	BAR		
Dry - front	22	1.5	22	1.5	29	2.0	29	2.0		
Dry – rear	21	1.4	21	1.4	29	2.0	29	2.0		
Wet – front	25	1.7	25	1.7	29	2.0	29	2.0		
Wet – rear	24	1.6	24	1.6	29	2.0	29	2.0		

Radical SR3	Cold (gu	ide only)	HOT (minimum)			
	PSI	BAR	PSI	BAR		
Dry - front	22	1.5	29	2.0		
Dry – rear	21	1.4	29	2.0		
Wet – front	25	1.7	29	2.0		
Wet – rear	24	1.6	29	2.0		

Radical SR8	Cold (gu	ide only)	HOT (minimum)			
	PSI	BAR	PSI	BAR		
Dry - front	25	1.7	32	2.2		
Dry – rear	23	1.6	32	2.2		
Wet – front	26	1.8	32	2.2		
Wet – rear	25	1.7	32	2.2		

Radical SR1	Cold (gu	ide only)	HOT (minimum)				
Dunlop SP Sport	PSI	BAR	PSI	BAR			
Dry - front	20	1.35	29	2.0			
Dry – rear	23	1.6	32	2.3			

Please respect this advice to avoid excessive sidewall distortion and the risk of deflation.

TYRE SAFTEY ADVICE – DEFLECTION

ADVICE ON THE HANDLING OF RACE TYRES IN COLD TEMPERATURES

Race tyres (car & motorcycle) can be damaged by rough handling in cold temperatures.

The damage occurs in the form of `hairline' cracks - like very thin splits - often at the edge of the tread and/or the upper sidewall.

This damage occurs when tyres are handled heavily in low temperatures eg. when `thrown' to the floor from a truck or dropped from a storage location.

Based on expert advice from the *DUNLOP* Development Centre - Hanau (DDC*H), race tyres should always be stored in accordance with the following recommendations:

Minimum storage temperature +20°C

After prolonged storage in temperatures of less than +10°C, tyres should be handled gently until warmed to +20°C

At 5°C and below it is advisable not to move tyres unless absolutely necessary - and then only with extreme care!

TYRE SAFTEY ADVICE -

TYRE WEAR PATTERNS

Conversations and judgements about grip and handling should always be preceded with thorough examination of tyre working surface.

Lots of information and indicators are contained within the whole picture of the tyre and should never be ignored. Not only grip but also longevity can be estimated, which may be more important. It is the only connection between the tyre and the road! There must be information for your "Engineer's Library" in there. Use computer data and visible indicators to get the best all round view of car and tyre behaviour.

Measure tyre temperatures and pressures as often as possible straight after a fast lap, easily done by getting a driver to do a full pace "in" lap, in order to get the best readings. However, be sure not to read the temperature of the pickup on the tyre.

GOLDEN RULES

- 1. Watch and ask an expert how to take temperatures properly (Dunlop personnel) and practice as often as possible
- 2. When examining a tyre, always check both sides, as the unloaded side can drag the inner wheel into excessive negative camber and over heat the inner edge.
- 3. Do the loaded side first inner edge to outer edge.

The following is only a guide to make you think more about the subject.

Pretty good rear tyre.

If rear grip is good then it's ok. If rear grip is low, more camber can be added before the tyre is damaged.

Pretty poor front tyre.

Not enough negative camber (A). This car was understeering, looking at the wear depth indicators. The amount of graining is just about okay for a hard worked tyre.

COLD TEAR

This tyre has only done a qualifying session. It shows signs of something known as "*cold tear*" (B), which occurs around the seam of the tread in the centre of the tyre.

Cold Tear is caused by the rubber been torn away rather than grained or rolled. This happens when a driver pushes too hard, too soon, and with no heat in the tyre. If the driver were to wait one more lap, the tyre would be in much better condition. The driver may have had a good result in qualifying from this, but the tyre will struggle during race distance.

This is dependent on track type, track temperature, air temperature etc.

Rear Tyre showing evidence of cold tear.

Looking at wear holes there has been slight over inflation with not enough camber.

Inside Edge

VERY WELL USED FRONT TYRE.

Graining is on the outside only (C) with a nearly new tyre on the inside edge indicating nowhere near enough camber (D), resulting in lots of understeer.

Tyre worn so badly that the tread surface has tapered on the inside edge (E) due to excess camber. Has very little pick up on so cleaning never looks good.

RECOMMENDED GEAR RATIO CHART

Circuit	SR8 RX 2.7 Quaife (10,500rpm)	SR8 RX 2.7 Quaife (9,500rpm)	SR3 1500cc Gear Drive	Aero	Note / Warning
Almeria	Short	Medium	3.071:1	Н	
Anglesey	Short		3.235:1	н	
Ascari	Medium	Long	3.071:1	М	Hard on tyres
Barcelona	Medium	Long 6 th	3.071:1	М	Abrasive, hard on tyres. If warm, reduce camber
Brands Hatch Indy	Short	Medium	3.235:1	Н	
Brands Hatch GP	Short	Medium	3.235:1	М	
Cadwell Park	Short		3.40:1	н	Lots of droop, no rebound
Castle Combe	Medium		3.071:1	М	Very bumpy, soften damping
Croft	Short		3.235:1	М	
Dijon Prenois	Long		2.917:1		
Donington GP	Short (but with long 5 th as 6 th)	Medium	3.235:1	М	Brakes!
Donington National	Short (but with long 5 th as 6 th)	Medium	3.235:1	М	Brakes!
Estoril	Long	Extra Long	2.917:1	L	Quite bumpy
Hungaroring	Medium	Long	3.235:1	М	
Imola	Long	Extra Long	3.071:1	L	Raise ride height for last chicane
Laguna Seca	Medium	Long	3.071:1		
Mallory Park	Short		3.235:1	Н	
Monza	Long	Extra Long	2.917:1	L	Respect Max Rear camber Regulation
Nürburgring GP	Short	Medium	3.235:1	М	
Oulton Park Int'l.	Short		3.235:1	М	Beware bumps at pit exit
Oulton Park Island	Short		3.235:1	М	Beware bumps at pit exit
Paul Ricard	Medium	Long	3.071:1	М	
Pembrey	Short		3.235:1	М	
Portimao	Medium	Extra Long	3.071:1	L	Very bumpy, soften damping
'Red Bull' Ring	Medium	Long	3.071:1	М	Brakes
Rockingham	Medium		3.071:1	М	
Silverstone Arena	Medium	Long	3.071:1	L	
Silverstone Int'l.	Medium	Long	3.071:1	L	
Silverstone National	Short		3.235:1	L	
Snetterton 200	Medium	Long	3.071:1	L	
Snetterton 300	Medium	Long	3.071:1	L	
Spa-Francorchamps	Medium	Long	3.071:1	М	Respect Max Rear camber Regulation
Thruxton	Long	Extra Long	2.917:1	L	Respect Max Rear camber Regulation
Valencia	Medium	Long	3.235:1	М	Abrasive
Zandvoort	Medium	Long	3.235:1	М	Very low grip circuit

SR3 GEAR RATIO CHART

				Ratio	3-594:1	3.409:1	3.235:1	Standard factory fitted ratio (UK cars) 3.071:1	2.917:1	2.770:1
				No. Teeth/ Part No. No. Teeth/	32 A-3R 1-20 46	33 A-3R 1-22 45	34 A-3R 1-24 44	35 A-3R 1-26 43	36 A-3R 1-28 42	37 A-3R 1-36 41
	1	1	1	Part No.	A-3R 1-21	A-3R 1-23	A-3R 1-25	A-3R 1-27	A-3R 1-29	A-3R 1-37
Gear	No. Teeth (input)	No. Teeth (output)	Ratio	Rev drop at 10,500 rpm	Speed in MPH drop	Speed in MPH drop	Speed in MPH drop	Speed in MPH drop	Speed in MPH drop	Speed in MPH drop
ıst	13	34	2.615:1		49.61	52.30	55.10	58.05	61.13	64.36
2nd	16	31	1.938:1	2721.50	66.96	70.59	74.38	78.36	82.51	86.88
3rd	19	29	1.526:1	2228.35	85.00	89.61	94.42	99.46	104.74	110.29
4th	21	27	1.286:1	1655.17 1219.70	100.91	106.38	112.09	118.08	124.34	130.92
5th	22	25	1.136:1	858.26	114.17	120.36	126.82	133.60	140.69	148.13
6th	23	24	1.043:1		124.34	131.08	138.11	145.49	153.21	161.32

Max Revs

10,500RPM

Primary reduction ratio Rolling tyre circumference

1.596:1 (83/52) 1.901m (0.605m dia)

SR3 GEAR DRIVE UNIT – EXPLODED DIAGRAM

@10,000rpm	SHORT	MEDIUM	LONG	EXTRA LONG		
Gear	Speed in KPH	Speed in KPH	Speed in KPH	Speed in KPH		
ıst	109	109	109	109		
2nd	149	149	149	149		
3rd	170	178	178	178		
4th	192	206	206	206		
5th	214	229	237	237		
6th	6th 235		272	279		

Mini Q-Tek H	POID Gear														
Radical part #	Quaife Input	Quaife Output	Gear	Input	Output	Short	Med.	Long	Ex Long	SR3 Ford	Ratio	MPH Std	KPH Std	MPH Std	KPH Std
ΤQ0300	E-72G1-60	E-72G1-66	1 st	12	34	1	1	1	1	1	2.83	69	111	49	78
TQ0301	E-72G1-61	E-72G1-67	2 nd	14	29	1	1	1	1	1	2.07	95	152	67	107
TQ0302	E-72G1-72	E-72G1-76	3 rd	16	29	1					1.81	109	174		
ΤQ0303	E-72G1-62	E-72G1-68	3 rd	15	26		1	1	1		1.73	114	182		
TQ0304	E-72G1-73	E-72G1-77	4 th	18	29	1				1	1.61	122	196	75	119
ΤQ0305	E-72G1-63	E-72G1-69	4 th	18	27		1	1	1		1.50	131	210		
TQ0306	E-72G1-74	E-72G1-78	5 th	18	26	1					1.44	136	218		
ΤQ0307	E-72G1-64	E-72G1-70	5 th	20	27		1				1.35	146	233		
TQ0308	E-72G1-75	E-72G1-79	6 th	19	25	1					1.32	150	239		
ΤΩο3ο9	E-72G1-80	E-72G1-81	5 th	20	26			1	1	1	1.30	155	248	106	170
TQ0310	E-72G1-65	E-72G1-71	6 th	20	24		1				1.20	164	262		
TQ0311	E-72G1-45	E-72G1-51	6 th	22	25			1			1.14	173	277		
TQ0312	E-72G1-82	E-72G1-83	6 th	19	21				1		1.11	178	285		
TQ0410	E-72G1-11	E-72G1-12	5 th	22	23					1	1.05			132	212
TQ0411	E-72G1-13	E-72G1-14	6 th	23	20					1	0.87			159	255

RPE 6 SPEED TRANSAXLE GEAR RATIOS FOR RADICAL SR8 HYPOID AND NON-HYPOID

NON-HYPOID GEAR RATIO LIST:

SHORT RA	TIO SET						
Gear	Ratio	Part No	Notes				
ıst	10:26	TQ0164	Same on all three sets				
2 nd	13:25	TQ0165	Same on all three sets				
3 rd	17:28	TQ0152					
4 th	17:25	TQ0153					
5 th	19:25	TQ0154					
6 th	20:24	TQ0163					
MEDIUM RATIO SET							
Gear	Ratio	Part No	Notes				
3 rd	17:27	TQ0159					
4 th	16:22	TQ0160					
5 th	21:26	TQ0150					
6 th	18:20	TQ0151					
LONG RATIO SET							
Gear	Ratio	Part No	Notes				
3 rd	17:27	TQ0159					
4 th	16:22	TQ0160					
5 th	20:24	TQ0163					
6 th	23:24	TQ0161					

HYPOID GEAR RATIO LIST:

SHOR	RATIO SET					
Gear	Ratio	Part No	Notes			
1 st	12:34	TQ0300	Same on all sets			
2 nd	14:29	TQ0301	Same on all sets			
3 rd	16:29	TQ0302				
4 th 5 th	18:29	TQ0304				
5 th	18:26	TQ0306				
6 th	19:25	TQ0308				
MEDIU	IM RATIO SE	T				
Gear	Ratio	Part No	Notes			
3 rd	15:26	TQ0303	Same as 3 rd long & 3 rd extra long			
4 th 5 th	18:27	TQ0305	Same as 4 th long & 4 th extra long			
5 th	20:27	TQ0307				
6 th	20:24	TQ0310				
LONG	RATIO SET					
Gear	Ratio	Part No	Notes			
3rd	15:26	TQ0303	Same as 3 rd long & 3 rd extra long			
4	18:27	TQ0305	Same as 4 th long & 4 th extra long			
5 th	20:26	TQ0309	Same as extra long			
6 th	22:25	TQ0311				
EXTRA LONG RATIO SET						
Gear	Ratio	Part No	Notes			
3 rd	15:26	TQ0303	Same as 3 rd long			
4 th	18:27	TQ0305	Same as 4 th long			
5 th	20:26	TQ0309	Same as 5 th long			
6 th	19:21	TQ0312				

RPE 6 SPEED TRANSAXLE GEAR RATIOS FOR RADICAL SR8 (HYPOID)

Hypoid Gearboxes Have an 'H' Prefix After The Gearbox Number On The Tag

SIMMS' MEDAL NORDSCHLEIFE WINNER LAP RECORD HOLDER

QD77-2

SR8 GEAR RATIO CHART – HYPOID – SHORT

8	30	0.2667		Hunaid	
1	1	1.0000		пуроїй	
1	1	1.0000		Chart	
0.614	Dur	lop		Snort	
10000	Max 6th	10000			
			, ,		
In	Out	Ratio	Speed Mph	Speed Kph	Drop
12	34	0.3529	68	109	
			1298		2689
14	29	0.4828	93	149	
			690		1250
16	29	0.5517	106	170	
			690		1111
18	29	0.6207	120	192	
716					
18	26	0.6923	134	214	
			677		891
19	25	0.7600	147	235	
	1 1 0.614 10000 In 12 14 16 18 18	1 1 1 1 0.614 Dur 10000 Max 6th In Out 12 34 14 29 16 29 18 29 18 26	1 1 1.0000 1 1 1.0000 0.614 Dunlop 10000 Max 6th 10000 1 0ut Ratio 12 34 0.3529 14 29 0.4828 16 29 0.5517 18 29 0.6207	1 1 1.0000 1 1 1.0000 1 1 1.0000 0.614 Dunlop 0.000 10000 Max 6th 10000 1 0ut Ratio Speed Mph 12 34 0.3529 68 14 29 0.4828 93 16 29 0.5517 106 18 29 0.6207 120	1 1 1.0000 Hypoid 1 1 1.0000 Short 0.614 Dunlop Short Short 10000 Max 6th 10000 Speed Mph Speed Kph 12 34 0.3529 68 109 14 29 0.4828 93 149 16 29 0.5517 106 170 18 29 0.6207 120 192 18 26 0.6923 134 214

SR8 GEAR RATIO CHART – HYPOID – MEDIUM

8	30	0.2667		Hypoid	
1	1	1.0000		пуроїа	
1	1	1.0000			
0.614	Dur	nlop	Medium		
10000	Max 6th	10000			
			,		
In	Out	Ratio	Speed Mph	Speed Kph	Drop
12	34	0.3529	68	109	
-			1298		2689
14	29	0.4828	93	149	
			942		1632
15	26	0.5769	111	178	
			897		1346
18	27	0.6667	129	206	
7/1					
20	27	0.7407	143	229	
			926		1111
20	24	0.8333	161	257	
	1 1 0.614 10000 In 12 14 15 18 20	1 1 1 1 1 1 0.614 Dur 10000 Max 6th 11 0.614 10000 Max 6th 11 0.000 11 0.000 11 0.000 11 0.000 11 0.000 112 34 114 29 115 26 118 27 20 27	1 1 1.0000 1 1 1.0000 0.614 DUUD 10000 Max 6th 10000 1 000 Ratio 10000 1 29 0.4828 0.5769 18 27 0.6667 20 27 0.7407	1 1 1.0000 1 1 1.0000 0.614 DUUD 10000 Max 6th 10000 1 0.000 Max 6th 10000 1 Out Ratio Speed Mph 12 34 0.3529 688 14 29 0.4828 93 15 26 0.5769 111 18 27 0.6667 1229 20 27 0.7407 143	1 1 1.0000 Medium 1 1 1.0000 Medium 0.614 DUUU Medium Medium 10000 Max 6th 10000 Speed Mph Speed Kph 11 Out Ratio Speed Mph Speed Kph 12 34 0.3529 683 1093 14 29 0.4828 93 149 15 26 0.5769 111 178 18 27 0.6667 129 206 20 27 0.7407 143 229

SR8 GEAR RATIO CHART – HYPOID – LONG

Final Drive	8	30	0.2667		Hypoid	
Bevel Gear	1	1	1.0000	Пурога		
Transfer gear	1	1	1.0000		Laws	
Tyre Diam	0.614	Dur	nlop	Long		
Max RPM	10000	Max 6th	10000			
	·			,		
Gear	In	Out	Ratio	Speed Mph	Speed Kph	Drop
1st	12	34	0.3529	68	109	
				1298		2689
2nd	14	29	0.4828	93	149	
				942		1632
зrd	15	26	0.5769	111	178	
				897		1346
4th	18	27	0.6667	129	206	
				1026		1333
5th	20	26	0.7692	148	237	
				1108		1259
6th	22	25	0.8800	170	272	

SR8 GEAR RATIO CHART – HYPOID – EXTRA LONG

Final Drive	8	30	0.2667		Hypoid	
Bevel Gear	1	1	1.0000		пуроїа	
Transfer gear	1	1	1.0000			
Tyre Diam	0.614	Dur	nlop	Extra Long		
Max RPM	10000	Max 6th	10000			
				, 		
Gear	In	Out	Ratio	Speed Mph	Speed Kph	Drop
1st	12	34	0.3529	68	109	
				1298		2689
2nd	14	29	0.4828	93	149	
				942		1632
3rd	15	26	0.5769	111	178	
				897		1346
4th	18	27	0.6667	129	206	
				1026		1333
5th	20	26	0.7692	148	237	
				1355		1498
6th	19	21	0.9048	175	279	

SR8 (HYPOID) GEARBOX – EXPLODED DRAWING

Item #	Radical Part #	Supplier Part	# Description	Qty	Item #	Radical Part #	Supplier Part # Description	Description	QtV	Item #	Radical Part #	Supplier Part
H	TQ0316		Bearing Plate	H	<mark>56</mark>	TQ0198	E42G2122	Reverse Idler Spindle	-	111		879
7		E58G105	End Cover		57	TQ0366	E42G2123	Bush - Gear Change Spindle		<u>112</u>	TQ0144	880
<mark>m</mark> 4	TQ0164	E58G140 F58G141	1st Gear - Input (R.2600:1) 2nd Gear - Innut		80 87	TQ0230	E42G1124 E42G2128	Operating Spindle Crownwheel Rearing Retainer Plate		113 114	TO0383	881
r n	T00159	E58G142	ard Gear - Input	-	6 <mark>09</mark>	T00227	E42G1183	Cable Operating Arm	-	115	T00202	639
9 0	TQ0160	E58G143	4th Gear - Input		61	TQ0383	E42G1132	Oil Pump Cover		116		971
7	TQ0163	E58G144	5th Gear - Input		62	TQ0217	E42G3135	Shaft Clamp Screw	1	117		988
∞	TQ0161	E58G145	6th Gear - Input	-	63	TQ0237	E42G1139	Interlock Plunger Neutral	-	118	TQ0200	1003
б	TQ0164	E58G246	1st Gear - Output	1	64	TQ0220	E42G2140	Pump Gear Drive	1	119	TQ0294	1013
10		E58G247	2nd Gear - Output	1	65	TQ0355	E42G1152	Threaded Dowel	2	120		1022
11	TQ0159	E58G248	3rd Gear - Ouput	1	99	TQ0282	E42G1151	End Case Bung	1	121	TQ0039	1035
12	TQ0160	E58G249	4th Gear - Ouput	7	67	TQ0371	E42G1153	Pinion Spacer	1	122		1070
13	TQ0163	E58G250	5th Gear - Ouput	-	<mark>68</mark>	TQ0228	E42G1154	Nut - Output Shaft	1	123 123	TQ0287	1071
14	TQ0161	E58G251	6th Gear - Output	-1	69		E42G1162	Cover - Diff Retainer	1	124		1109
15	TQ0186	E58G252	Reverse Gear - Output	1	70	TQ0208	E42G1165	Ball Bearing	1	125	TQ0247	1124
16	TQ0199	E58G153	Reverse Gear - Input	1	71		E42G1167	Cover - Diff Retainer	1	126	TQ0205	1156
17	TQ0223	E58G181	Pinion - Spiral Bevel (R.4111:1)	1	72	TQ0298	E42G2179	Input Shaft	1	127	n/a	n/a
18	TQ0325	E58G3102	Inner Track (Splined Hub)	2	73		E42G1187	Flange Retaining Bolt	2	128	TQ0203	1240
19	TQ0162	E58G2103	Drive Disc (Dog-ring)	4	74	TQ0234	E42G1203	Bevel Gear Spool	1	129		1261
20	TQ0323	E58G1104	Thrust Washer	2	75	TQ0239	E42G1213	Clamp Plate Return Spring	1	130	TQ0344	1271
21	TQ0193	E58G2106	Inner Track (Reverse Gear)	1	76	TQ0251	E42G1214	Ratchet Arm Lever	1	131	TQ0296	1295
22	TQ0352	E58G1107	Spacer - Input Shaft	m	17	TQ0235	E42G1215	Ratchet Pin	2	132	TQ0273	1296
23	TQ0168	E58G2108	Selector Fork - 5th/6th	-	78	TQ0224	E42G1216	Ratchet Claw	-	133	TQ0361	1297
24	TQ0274	E58G2110	Camdrum Spindle		79	TQ0233	E42G1218	Gear Change Cover	7	134		1310
25		E58G2112	Reverse Track (Normal Rotation)	-	8	TQ0197	E43G1017	Reverse Idler Gear	1	135	TQ0243	1389
26		E58G2112A	Reverse Track		81		E52G155	Thrust Washer 1st Gear Output		136	TQ0244	1399
27	TQ0170	E58G1113	Selector Fork Support Rod	-	8	TQ0324	A3R142	Oil Pump Gear (Driven)		137	TQ0348	1441
28	TQ0191	E58G2115	Reverse Fork Pin	-	8	n/a	n/a	n/a	n/a	138	100209	1451
29	TQ0192	E58G2116	Selector Fork - Reverse	-	8	TQ0242	F5F107	Hollow Dowel	7	139	TQ0276	1454
30	TQ0270	E58G1119	Camdrum (6 Speed Reverse Rotation)	, ,	82 <mark>2</mark>	TOOL	QDF2Q	Differential	; 1-7	140	T00326	1460
31	100249	E58G112b	Index Screw	- (8 8	100356	607	Bolt	;	141	100248	1403
32	T00240	E58G1128	Katchet Claw Stop	7	20	100134	522	Ball Bearing	, ,	142	10211	1465
5	517001	E2861129	Selector Fork - 3rd/4th	-	8	1/1001	31/	Circlip 18mm	-	143		1466
34	TQ0317	E58G1130	Inner Track (Splined Hub)		8		389	Bolt	7	144		1467
35		E58G1EX02	Flare Cap - (5929-06)	77	6		442	Bolt	m -	145		1468
36	n/a	n/a	n/a	n/a	91	TQ0026	450	Roller Bearing		146		1469
3/	T00132	E6G169		m •	<mark>67</mark>	1Q0246	455	Circlip n-it	7 7	14/		1488
<mark>x</mark>	101341		Inrust washer - Keverse Idler	-	5	0,0001	4/1	Bolt	v	148		1489
ور د		E18G164	Housing - Guide Tube			100219	4/5	Gearbox UII Seal	7 4	149		1490
4 1		E18GA66	Slider/Diston		n a		507	Bolt	- <i>u</i>	21 1 1 1		1001
42		E18G1176	Fulcrum Ring		67 97	T00255	519	Bolt	~	152		
43		E25G1181	Clutch Unit Spacer	-	86	T00218	584	Gearbox Oil Seal	-	153		
44		E32G1118	Washer	2	66		595	Sellock Pin	1	154		
45	TQ0241	E33G173	Interlock Housing Cap	-	100		609	O-Ring Seal	-	155		
46	TQ0272	E34G144	Sensor Drive Plug		101		684	Bolt	5	156		
47	TQ0268	E34G1112	Thrust Washer - Reverse Gear O/P Shaft		102		758	Nut - Nylock M6	2	157		
48	n/a	n/a	n/a	n/a	103		775	Bolt	2	158		
49		E42G203	Main Casing	-	104	TQ0295	797	Bush	2	159		
50		E42G1093	Crown Wheel - Spril Bevel R4.111:1	1	105		801	Bolt	2	160		
51	TQ0351	E42G1108	Bearing Retainer Cap	2	106		817	Washer	1	161		
52	TQ0214	E42G2111	Selector Fork - 1st/2nd & 3rd/4th		107	TQ0245	831	Dowel	12	162		
23	10001	E42G1115	Drum Bush Flange		108	TQ0221	838	Roller Bearing	, ,	163		
24	1/7001	E42G1119					842			104	TOOTE	1641
ĉ	007001	17110743		-	OTT	100223	0/0	I aper Noller bearing	7		TO0104	140T
										1	10100	1017

Stud

Stud Stud

Jowty Seal Roller Bearing Plug

Bolt

Searing

owe Bush

Bush

Nut - Kaylock M10 Nut - Kaylock M8 Nut - Kaylock M6

O-Ring O-Ring O-Ring Hose Union Washer

SIMMS' MEDAL NORDSCHLEIFE WINNER LAP RECORD HOLDER

Page 42

QD77-2

÷

Ratchet Spring Circlip External

SR8 GEARBOX PARTS LIST

 Pescription
 C

 Schnorr Washer M6
 2

 Schnorr Washer M8
 3

 Schnorr Washer M10
 3

 Magnet End Case Bung

t

 Qty

 22

 30

 15

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1</t

Bolt Gearbox Bearing

Bearing

Nyloc M8

Jowel

Circlip - Internal Gearbox Oil Breather

Washer

Oil Seal Schnorr Washer M4

Washer Roller Bearing

RXC V6 STRAIGHT CUT RATIOS

PART NO.	DESCRIPTION	INPUT	OUTPUT	RATIO
E81G220	INPUT SHAFT INC 1ST & REV			
E81G130	1ST GEAR O/P		39T	2.438:1
E81G121/E81G131	2ND GEAR	18T	34T	1.889:1
E81G122/E81G132	3RD GEAR	20T	30T	1.500:1
E81G123/E81G133	4TH GEAR	21T	26T	1.238:1
E81G124/E81G134	5TH GEAR	23T	24T	1.043:1
E81G125/E81G135	6TH GEAR	29T	26T	0.897:1
E81G2133/E81G1137	7TH GEAR	30T	25T	0.833:1
E81G243	OUTPUT SHAFT		18T	3.056:1
E81G1121	CROWNWHEEL GEAR		55T	3.056:1
V6 OIL PUMP STRAIGHT	CUT 16 TOOTH			

PART NO.	DESCRIPTION	INPUT	OUTPUT	RATIO
E81G2101	INPUT SHAFT INC 1ST & REV			
E72G1126	1ST GEAR O/P		43T	2.867:1
E72G1121/E72G1127	2ND GEAR	19T	39T	2.053:1
E72G1122/E72G1128	3RD GEAR	23T	37T	1.609:1
E72G1123/E72G1129	4TH GEAR	26T	34T	1.308:1
E72G1124/E72G1130	5TH GEAR	29T	31T	1.069:1
E72G1125/E72G1131	6TH GEAR	32T	28T	0.875:1
E81G2101/E81G1103	7TH GEAR	34T	26T	0.765:1
E81G1105	OUTPUT SHAFT		23T	3.130:1
E81G1105	CROWNWHEEL GEAR		72T	3.130:1
V6 OIL PUMP HELICAL	CUT			

PART NO.	DESCRIPTION	INPUT	OUTPUT	RATIO
E81G2153	INPUT SHAFT INC 1ST & REV			2.833:1
E72G166	1ST GEAR O/P		32T	2.8:33
E72G161/E72G167	2ND GEAR	14T	29T	2.071:1
E72G162/E72G168	3RD GEAR	15T	26T	1.733:1
E72G163/E72G169	4TH GEAR	18T	27T	1.500:1
E72G180/E72G181	5TH GEAR	20T	26T	1.300:1
E72G145/E72G183	6TH GEAR	22T	25T	1.136:1
E72G1111/E72G1112	7TH GEAR	22T	23T	1.045:1
E81G2138	OUTPUT SHAFT		15T	4.067:1
E81G1139	CROWNWHEEL GEAR		61T	4.067:1

RXC 7-SPEED – EXPLODED DIAGRAM

Quaife 7 Speed Gearbox Output Shaft Assembly RPE V8 Spur Ratios ITEM NO. ITEM NO. PART NUMBER DESCRIPTION QTY. PART NUMBER DESCRIPTION QTY. OUTPUT SHAFT, 15T - R4.067:1 1 E-81G1-138 1 13 E-81G1-48 THRUST WASHER - REV. GEAR O/P SHAFT 1 2 E-81G1-139 CROWNWHEEL GEAR, 61T - R4.067:1 1 14 2 E-81G2-149 NUT O/P SHAFT - R.H. 3 E-72G1-66 1st GEAR O/P, 34T - R2.833:1 1 15 E-81G2-144 SPACER, 4-POINT BEARING, 4mm - OUTPUT SHAFT 1 4 E-72G1-67 2nd GEAR O/P, 29T - R2.071:1 1 16 3 E-58G2-103 DRIVE DISC 5 E-72G1-68 3rd GEAR O/P, 26T - R1.733:1 1 17 2 E-58G1-104 THRUST WASHER 6TH GEAR O/P SHAFT - I/P SHAFT E-72G1-69 4th GEAR O/P, 27T - R1.500:1 1 18 6 E-58G1-130 SPLINED HUB/INNER TRACK 1st/2nd GEARS 2 7 E-72G1-81 5th GEAR O/P, 26T - R1.300:1 1 19 958 BEARING - ROLLER 35x72x17 2 8 E-72G1-83 6th GEAR O/P, 21T - R1.105;1 1 20 1003 BEARING - BALL 4 POINT 35x72x17 1 9 6TH GEAR, O/P, 23T - R0.958:1 1 21 BEARING - ROLLER 40x45x13 7 E-81G1-136 1156 10 E-81G2-49 REVERSE GEAR/7TH SLIDER, O/P, 44T - R2.444:1 1 (2) SPLINED HUB/INNER TRACK, 3RD GEAR O/P 1 11 E-81G1-46 1 12 E-81G1-47 SPLINED HUB, 7TH/REV SLIDER, O/P (8) (19) 16

ITEM NO.	PART NUMBER	DESCRIPTION	QTY.
1	E-81G1-63	CAM DRUM - 5TH, 6TH, 7TH, REV	1
2	E-81G1-64	CAM DRUM, 1st/2nd AND 3rd/4th GEAR	1
3	E-81G1-66	SELECTOR FORK, 7TH/REV	1
4	E-81G1-67	SELECTOR ROD/SPRAY BAR	1
5	E-81G2-151	GEARCHANGE SPOOL - PUSH/PULL GEARCHANGE	1
6	E-81G1-152	POTENTIOMETER PIN	1
7	E-81G1-76	MODIFIED SOCKET HEAD CAPSCREW M6x1.0x40 LG	1
8	E-61G1-104	SEL FORK - 1st/2nd, 3rd/4th, 5th/6th	3
9	E-60G1-107	MODIFIED DOWEL Ø 6x32 LG	1
10	E-16G2-72	M20x2.5 NUT	1
11	373	BEARING - BALL 25x52x15	1
12	449	BEARING - ROLLER 25x52x15	1
13	1209	BEARING - ROLLER 25x52x15	1
14	831	DOWEL $Ø$ 6x16 LG	2
15	2273	DOWEL $Ø$ 5x25 LG	8
16	1164	CIRCLIP - EXTERNAL	1
17	1574	SPRING PLUNGER, BALL END WITH HEX.	1
18	649	SOCKET HEAD CAPSCREW M5x0.8x30 LG	2
19	1124	WASHER - DOWTY SEAL M6	1
20	1969	PLUG - TAPER 1/8 BSPT	1

RADICAL GEARBOX RUNNING IN INFORMATION

All new gears are lapped at manufacture. However, they are not lapped under the same pressures that driving creates. The loads generated while driving force any microscopic high spots on the gear teeth back into the surface of the metal. This is called "work hardening". Work hardening is similar to forging in the way that it compresses the metal molecules into a very compact and hard formation.

Running in procedure:

- 1. Keep the vehicle at speeds <u>below 60%</u> for the first 30 minutes of running.
- 2. It helps to stop to let the gearbox cool for 15 minutes before continuing.
- 3. Build this up throughout the day, with increases of speed and load percentage of 10% every 30 minutes of running.
 - → i.e 60% for first 30 minutes, 70% for next 30 minutes, 80% for next 30 etc. This is necessary because not all of the gear tooth's are making contact until it is heavily loaded.

When driving, the teeth flex to contact completely, and cause the previously unloaded portion of the teeth to touch and work harden. It is very easy to damage the ring & pinion by overloading before the teeth are broken-in. If you take it easy on a new ring & pinion and keep it full of high quality oil, it will last a lot longer.

LIFE RACING / ENGINE DATA SOFTWARE

PTMON – SCREEN LAYOUT

- 1. Engine coolant temperature (ect1) changes from red to green when in correct range of 60°C to 95°C
- 2. Engine oil temperature (eot) changes from red to green when in correct range of 50°C to 120°C
- 3. Engine oil pressure (eop1) At idle, 70 psi when cold /20 psi when hot
- 4. Engine rpm (rpm) Engine should idle between 1500 and 1800rpm
- 5. Throttle position sensor (tps1) needs to be set to 4% at idle
- 6. Engine sync state should be at 720° when engine is running, turns green when correct
- 7. Fuel pressure (fp1) changes from red to green when in correct range 2.8 bar to 3.2 bar
- 8. Battery voltage (vbat) above 12.5 volts when engine is running
- 9. Air charge temperature sensor (act1) air inlet temperature
- 10. Engine ECU temperature (btMax) temperature of the engine ECU
- 11. Baro sensor pressure (bap) below 1030 mBar
- 12. Gear Indicator Should be Neutral when starting. Gear position voltage displayed for technical use

LIFE DATA SOFTWARE

Life Data is used to download the engine data from the ECU's internal memory to a PC. The instructions below explain how to do this.

- 1. Connect a computer to the ECU/car and turn both the ignition and master switches on to power up the ECU.
- 2. A working directory now needs to be created. This selects the folder in which the data will be stored once it has been downloaded, and sets a route to find the information. It contains the name of the driver and/or car number etc. For example C:\Program Files\Life Racing\Track Maps & Data\SR3 (SR5, SR8)\Customer\ Track & Date.
- 3. Open the Life Data icon on your desktop.
- 4. Select F for file, then W for working directory.
- 5. At the top of the screen, below the toolbar will be;

C:\Program Files\Life Racing\Track maps & Data

If not, correct this part by selecting the full stop button... it goes back one section. Then by selecting "create", a box comes up with "enter new directory name". Enter the appropriate information, such as car type, chassis number, circuit and date. Once this is done, press Enter.

R Lif	feDat	ta 2.10.0							
Eile									
C:\P	rogra	am Files\Life Racing\Track Maps and D	a\Data\SR3\						
		SELECT							
		CREATE							
1	х.	2							
6	1	DESKTOP							
9	С	Local Disk (<u>C</u> :)							
٨	D	DVD-RAM Drive (D:)							
ی	Е	DVD Drive (E:)							
9	Ρ	Powertec Shared on 'server01' (P:)							
					1				
			Enter new o	directory name					
			Silverstone	060910					
			Of	Cancel					

If on the other hand this has been set up the next part will be in the drop down box i.e. Track maps & Data, SR3 or SR5 or SR8, customer name, track & date. All you then need to do is select the appropriate item until it is complete.

- 6. Highlight "select" & press return.
- 7. A box comes up with "there is no LR directories config file at: Create one select Yes.
- 8. Another box with "place shortcut on desktop" select No.
- 9. Then select D for device and R for read data.
- 10. In the next box select ok. If this data needs to be looked at, load up Life View, click on File, Load and then find as above the appropriate file. Once you have loaded up a data file, the channels will be listed down the right hand side of the screen, to display a channel highlight it using the arrows on the keyboard and press enter.

If the data needs to be e-mailed go through My computer, Program Files, Life Racing, Track maps & Data, SR₃/SR₅/SR₈, customer, track & date select file or files to be e-mailed.

LIFE ECU DATA EXPLAINED.

Act1	Air charge temperature. This is the sensor in the airbox. This should be a constant line without large variations in reading (spiking). If this sensor has failed it will read 10°c.
Bap	Barometric air pressure. This sensor is mounted near the engine ECU. It measures atmospheric pressure and compensates the calibration for altitude and air pressure. This should be a constant line also without large variations in readings (spiking). If this sensor has failed it will read 1013
Btmax	ECU internal temperature.
Clutch switch.	This is the button mounted onto the steering wheel. (Neutral button)
Ect1	Engine Coolant Temperature. Minimum temperature before driving should be 50°c. When the car is running on the track, a minimum temperature of 70°c should be seen. If required, tape should be placed over a section of the radiator to increase the temperature. If this is required, then the temperature throughout the day should be monitored to ensure the engine temp is around 85°c. Maximum driving water temperature should not be over 95°c.
Engineenable	This is used to show when the eop1trip has stopped the engine (or any other trip)
Eop1	Engine Oil Pressure The oil pressure trace should follow a similar profile to engine rpm. With the engine on power and above 9000rpm the oil pressure should not go below 50psi. If the oil pressure drops against engine revs, Powertec should be contacted and data sent.
	If a drop is seen, then it is generally indicating low oil level in the oil tank or oil loss.
Eopt1trip	this shows where the threshold is for the oil pressure trip. If the oil pressure drops below this line for more than 1 second, the engine will turn off automatically.
Eot	Engine Oil Temperature Minimum on load oil temperature should be 50°c and a maximum of 130°c. Normal running temperature should be around 105c.
Fp1	Fuel Pressure This should be no higher than 3.5 bar and no lower than 2.5 bar with the engine running.
Gear	This shows what gear the gearbox is in at the time.
Gearbliprequest	This shows the request sent from the ECU to blipper solenoid.
<mark>Gearblipstate</mark>	This shows what signal the calibration is sending to the blipper solenoid.
Gearcutdogkickcount	Shows the number of times the ECU has had to briefly re-instate the power to "kick" the gear off the dogs.

SIMMS' MEDAL NORDSCHLEIFE WINNER LAP RECORD HOLDER

Page 51

<mark>Gearcutrequest</mark>	This shows when the paddle switch has asked for a gearcut to change gear. If you experience gear changing problems, then this can be monitored to ensure that the LIFE engine ECU is receiving a gear cut signal.
Gearcutstate	This show what state the cut is in, in relation to what has been set in the calibration.
Geardownshiftoutput	This shows the output signal from the ECU to the downshift solenoid.
Gearshiftdecision	This is a good thing to check if you are having gear change issues, as this show you if the shift has been ignored by the ECU, and shows you why it ignored it.
Gearupshiftoutput	This shows the output signal from the ECU to the downshift solenoid.
Gearshiftstate	Shows you what state the gearshift is in, in relation to the calibration.
Gearv	This shows the voltage that the gear position sensor is seeing, in relation to the selector barrel movement.
Gsp	Gear system pressure. This shows the pressure in the air tank.
Gspcontrol	This shows the signal from the ECU to the compressor motor.
Lamı Paddleswitch	This shows the reading from the exhaust lamba sensor (if fitted) this shows the input signal from the steering wheel paddles. I.e. which paddle the driver has used.
Revlimitactive	This shows when the rev limiter has been activated.
<mark>Rpm</mark>	Engine Speed If constant over-revs are seen (over 10,500 rpm), then the driver needs to be advised to adjust his driving style as this is causing damage to the engine. An over-rev should be no more than 10,800 maximum. Anything over this, then Powertec should be contacted.
Runmode	This shows whether the engine is running, stopped, cranking etc.
Runtime	This show the engine run time per session i.e. from when the engine is started, to when it is turned off.
<mark>Syncstate</mark>	This shows the state of the injector firing. It can also be used to check whether the crank and camshaft position sensors are working. If the camshaft sensor is not working, then the syncstate will show 360.
Tps1	Throttle Position Sensor This should be constant in relation to the driver's throttle input. Also at idle, this should be set to 4.0
Tpsclosed	this shows when the tps is in it closed position.
Vbat	Battery Voltage. This shouldn't drop below 11 volts when on load.

LIFE VIEW SOFTWARE

Life View is used to view engine data which has been downloaded from the ECU to a PC.

Once you have downloaded the data using LifeData following the download instructions on the previous page, the data which is extracted from the ECU will be saved in the 'Working Directory' folder you set up.

There are two types of files that the computer extracts from the ECU. These are session files which have the extension .LRD and logbook files which have the extension .LB.

The session files contain the data from a particular run or outing (from when the engine is started to when the engine stops). The time and date that the session began is in the name of the session file. The session files contain a trace of all the channels recorded, such as oil pressure, coolant temperature, throttle position etc.

To view the data, load LifeView. Once it has loaded, press F for file and L for load. Then find the data you are trying to open (which will be in the working directory you set up before you downloaded it). When you get to the data, you should see a list of session files. Highlight the one you want to load up and press enter to load it.

When the session file opens, you should see a screen like this:

The logged channels are listed down the right hand side. To display a trace of a channel, scroll down the list to the channel you want to view using the up and down arrow and then press enter to display a trace of the channel.

Some of the names are abbreviated;

eop1 = Engine oil pressure,

ect1 = Engine coolant temperature etc.

You can load up as many of these channels as you like, in order to overlay them on each other.

The colour of the trace and scale of the channels axis can be changed by right clicking on the channel in the list on the right hand side, as shown to the right.

The logbook file contains quite a lot of information. It has an overall record which records some important minimum and maximum values that the engine has reached and the total time the engine has been running for since it was built or re-built.

The logbook also records some important minimum and maximum values for each session that the engine has run.

Loading up a logbook is similar to loading up a session file. When in LifeView, press F for File and B for LogBook. The logbook will be stored in the same folder

as the session files, so navigate to that folder. When you get there, the logbook will not show up in the menu but if you scroll to select using the up and down arrows, details of the logbook will come up, as shown in the picture below. Press Enter to load the logbook.

LIFE ECU PARAMETERS EXPLAINED (ALL MODELS)

	V8	3.7 N/A	3.5TT	1500
Expected Running EOT	100°C	100°C	100°C	100°C
Expected Running ECT1	75°C	85°C	110°C	85°C
Expected Running ECT ₂	75°C	N/A	95°C	N/A
ECT1	Bank B	Dry Head Temp	Dry Head Temp	Wet Heat Temp
	Wet Water			
ECT2	Temp	N/A	Wet Water Temp	N/A
Expected Running EOP	75psi	8opsi	65psi	75psi
Expected Running FP	4Bar ¹	4Bar	4Bar	3Bar
Expected Running DIP	N/A	N/A	170Bar	N/A
Expected Running MAP	N/A	N/A	2Bar	N/A
Expected Running ACT	N/A	N/A	55°C	N/A
Min DIP Enable	N/A	N/A	50Bar	N/A
Fan On	88°C	90°C	90°C	92°C
Fan Off	85°C	80°C	80°C	90°C
Water Pump On	88°C	N/A	N/A	5°C
Water Pump Off	85°C	N/A	N/A	1°C
Charge Cooler On	N/A	N/A	5°C²	N/A
Charge Cooler Off	N/A	N/A	1°C ²	N/A
Fan 1	Rad Fan LH	Rad Fan	Rad Fan LH & Water Pump	Rad Fan
Fan 2	Rad Fan RH	N/A	Charge Cooler	Water Pump
Fan 3	N/A	N/A	Suspension Lifter	N/A
Fan 4	Water Pump	N/A	N/A	N/A
Air Conditioning	N/A	Rad Fan RH	Rad Fan RH	N/A
ECU	F88DBW4	F88DBW4	F90RX	F88
VVT	No	Yes	Yes	No
Knock Control	No	Yes	Yes	No
Drive By Wire Option	Jenvey	OEM	OEM	N/A
ECT Trip	120°C 5sec	120°C 15ec	115°C (ECTmax) 1sec Limp Mode	120°C (ECTmax) 5sec Limp Mode
EOT Trip	N/A	N/A	N/A	N/A
FP Trip	2.2Bar 2sec ³	3Bar 0.5sec	2.3bar 075sec	2.2Bar 2sec ³
EOP Trip	50psi	6opsi	50psi	40psi 10000rpm
Lean On-Load Trip	N/A	N/A	Limp Mode	N/A
Limp Mode	12% TPS Max ⁴	12% TPS Max	20% TPS Max	N/A
Rev Cut	10,500rpm	7,000rpm	6,75orpm	10750rpm
Rev Limit	10,000rpm	6,750rpm	6,500rpm	10500rpm

¹ Some 2.7's 3 bar

² Runs all the time

³ 3 bar for engines mapped on 4 bar

⁴ Jenvey DBW only

AIM DATA SOFTWARE

To download data from your AIM data logger you must first have the Race Studio 2 Software package installed on your laptop. This package should include Race Studio 2, Race Studio Analysis and SmartyManager.

RACE STUDIO 2

The Race studio 2 is used primarily to download the data from the data logger and save it on your PC for later analysis in Race Studio Analysis. Race Studio is also used to configure and calibrate your data logger. Configuration shouldn't need to be carried out once the system is initially set up unless additional sensors are added (eg, brake pressure sensors, suspension potentiometers). Calibration should be carried out before each race weekend or trackday meeting.

NOTE: If you are getting a message "Impossible to connect to Data Logger" this is probably due to not having the USB Drivers installed for Aim properly. If this occurs please refer to the AIM Manual.

RACE STUDIO ANALYSIS

The Race Studio Analysis software is where you can view all of the "runs" that you have downloaded from your AIM data logger.

Smart Manager (only applicable if AIM SmartyCam is installed)

Smart Manager is used to configure the SmartyCam to display various outputs from the data. For example the throttle position, brake position, RPM, Speed, Lap times etc. You also carry out firmware updates for the SmartyCam through SmartyManager.

DOWNLOADING DATA FROM THE AIM DATA LOGGER (MXL PISTA DASH)

As stated above you must have Race Studio 2 installed on your PC. The following steps will talk you through how to get the data downloaded onto your PC.

- 1. Connect your laptop to the car via a data download cable and power on the device (turn on the master switch)
- 2. Open Race Studio 2 and click on the "Download Data" icon on the left hand side. This will open the pop-up download window.

3. This pop-up download window displays all of the runs currently stored on the logger with the date and time of each run.

and the owner of the	Choose folder	C:\Program	Files\AIM\DATA\								
، گ	DRK file Name	Oriver> <v< p=""></v<>	ehide> <day><month></month></day>	<year (="" th="" yyy<=""><th>y)>.drk</th><th></th><th></th><th></th><th></th><th></th><th></th></year>	y)>.drk						
21E	Select all		Deselect al		🔁 не	le runs r	marked as "Hid	den"	ß	Options	
Sel.	D Hi	Driver	Vehicle	Date of Ru	in	Laps	Starting T	DR	DRK file name		
1	101	None	None	February 1	18, 2008	1	08: 01: 33	2	18022008_001.drk		
V	10151	None	None	February	17, 2008	1	18: 20: 12	1	17022008_001.drk		
V	10151	None	None	February	17, 2008	1	15: 45: 45	1	17022008_001.drk		
	10151	None	None	February	17, 2008	1	13: 43: 27	1	17022008_001.drk		
			Operation status				0%				

- 4. Previously downloaded runs will not be selected automatically so you should be able to click on "Download selected" or "Download selected runs, then clear memory". It is recommended that you "Download selected" and leave a backup on the logger until you have backed up the data from your PC to another storage device (e.g., a USB key).
- 5. The progress bar at the bottom indicates that the data is being downloaded.
- 6. When the download progress bar reaches 100% another window opens with the option to input some details about the session to make it easier to identify which session to look at later on in Race Studio Analysis. This is an important step so identify as many variables as possible (eg, vehicle, driver, track, test type and add a comment). The name for the file is automatically generated.
- 7. Click the OK or Save button and the progress bar indicates when the saving is complete.
- 8. The data is now downloaded and saved on your PC for analysis in Race Studio Analysis.

		Operation in prog	less	
-				100
1.0	lear logger memory after	and the second state		
		mi\AIM\DATA\NEW.DRK		
	Browse C:\Program	IMINAIMINATAINEW.DHK		
	Track:	None	•	Add / Modify
	Vehicle:	None		Add / Modify
•	Driver:	None		Add / Modify
2	Championship:	None	•	Add / Modify
	Test type:	Generic testing		1
7	Test comments:			

VIEWING PREVIOUSLY DOWNLOADED AIM DATA IN RACE STUDIO ANALYSIS

Having downloaded the data from your device using Race Studio 2 you can now view it and analyse it in Race Studio Analysis.

- 1. Open Race Studio Analysis.
- The data that you have downloaded is automatically put into the "Test Database". The test database can be arranged by any of the variables, but the most useful one is to arrange

Test name	Test date	<		
hawMachlachlanRadical SR314082011_002	Sun, Aug 14, 2011 14:08	34	11	1
ThorburnWheldonRadical SR314082011_001	Sun, Aug 14, 2011 11:27	37	6	2
David BurkeRadical SR314082011_001	Sun, Aug 14, 2011 11:14	34	17	1
ShawMachlachlanRadical SR314082011_001	Sun, Aug 14, 2011 11:12	36	30	2
NoneNone 13082011_005	Sat, Aug 13, 2011 18:09:06	12	4	1
ThorburnWheldonRadical SR313082011_001	Sat, Aug 13, 2011 18:00:28	28	12	2
David BurkeRadical SR313082011_004	Sat, Aug 13, 2011 17:51:02	26	5	2
ShawMachlachlanRadical SR313082011 001	Sat, Aug 13, 2011 17:48:33	26	11	2

by date so that the latest downloaded data is at the top. Click on the **Test Date** shown here

3. To open a particular test simply double click on the test you wish to open.

Test name	Test date			
ShawMachlachlanRadical SR314082011_002	Sun, Aug 14, 2011 14:08	34	11	1
ThorburnWheldonRadical SR314082011_001	Sun, Aug 14, 2011 11:27	37	6	2
David BurkeRadical SR314082011_001	Sun, Aug 14, 2011 11:14	34	17	1
ShawMachlachlanRadical SR314082011_001	Sun, Aug 14, 2011 11:12	36	30	2
NoneNone 13082011_005	Sat, Aug 13, 2011 18:09:06	12	4	1
ThorburnWheldonRadical SR313082011_001	Sat, Aug 13, 2011 18:00:28	28	12	2
🔁 David BurkeRadical SR 313082011_004	Sat, Aug 13, 2011 17:51:02	26	5	2
ShawMachlachlanRadical SR313082011_001	Sat, Aug 13, 2011 17:48:33	26	11	2

- 4. The blue icon on the left turns yellow on tests that are open.
- 5. This opens up the test and shows various options along the bottom of the screen that can be selected by clicking on them. As shown below:-

🔛 Test Database 🛛 🗗 Lap Manager 🖉 Measures Graph 🐃 🖾 Channels report 🔌 🎆 Gps 🔌 🚃 Split report 🏁

- 6. The **Test Database** tab takes you back to the Test Database and enables you to open more tests or close open tests
- 7. The Lap Manager tab will show laps times including in and out laps.
- 8. The **Measures Graph** tab is used to compare variables such as Speed, Throttle Position, Brakes Pressures etc between 2 or more laps
- 9. The **Channels Report** tab is used to look at Maximum and Minimum values for certain variables. This is a useful tool for assessing the engines temperatures and pressure.

TORQUE SETTINGS

SR3 ENGINE & GEAR DRIVE UNIT

SR8 ENGINE & GEARBOX

SUSPENSION COMPONENTS

SIMMS' MEDAL NORDSCHLEIFE WINNER LAP RECORD HOLDER

QD77-2

RXC TORQUE SETTINGS

Brakes Bolts (Bell to Rotor)	8Nm	6lbft	M6
Drive Pegs	6oNm	44lbft	7/16
Brake Bleed Nipple		10Nm	7lbft
Wishbones to Chassis	40Nm	30lbft	3/8
Wishbone (F+R) to Upright Clevis	65Nm	48lbft	М10
Upright to Bottom Wishbone (K Nut)	8oNm	59lbft	M12 K nut (Non Lubricated)
Steering Bracket to Upright (K Nut)	25Nm	18lbft	M8 K nut
Steering Bracket to Steering Arm	40Nm	30lbft	3/8
Rear Toe Link to Upright (K Nut)	25Nm	18lbft	M8 K nut
Rear Toe Link to Wishbone	40Nm	30bft	3/8
Lower Upright Stud	260Nm	192lbft	М16
Caliper to Upright	65Nm	48lbft	М10
Upright Bearing Hub Nuts	745Nm	550lbft	
Wheel Nuts	352Nm	260lbft	
Rocker to Chassis or Casting	48Nm	35lbft	М10
Damper to Chassis/Rocker	35Nm	26lbft	M8
Pushrod to Wishbone/Rocker	40Nm	30lbft	3/8
ARB Pushrod to Rocker/ARB	25Nm	18lbft	M8
Rear ARB Mount to Casting	25Nm	18lbft	M8
Rear Wishbone Brackets to Casting	16Nm	12lbft	M6
Casting Top to Chassis (Bolts)	88Nm	65lbft	M12
Casting Lower to Chassis (pin)	88Nm	65lbft	M12
Casting to Rear Frame	65Nm	48lbft	М10
Front ARB Mount Bracket to Steering Rack	25Nm	18lbft	M8
Steering Rack to Chassis	25Nm	18lbft	M8

LUBRICANT GUIDE

RADICAL SR3:

OIL TYPE	PART NUMBER	AMOUNT (L)	BRAND	VISCOSITY/ TYPE	LITRES REQ
ENGINE OIL	EO0007	5	FUCHS TITAN PRO R	15W - 50	7
BRAKE FLUID	BF0004	0.5	AP RACING	DOT4 - 600 RACING	0.8
CLUTCH FLUID	BF0004	0.5	AP RACING	DOT4 - 600 RACING	0.2
GDU OIL	TO0002	1	FUCHS RACE SYN 5	75W - 90	1.5
COOLANT	HW0001	1	TRIPLE QX (50:50 mix)	ALU ENGNIES -36°C FREEZING	7

RADICAL SR8:

OIL TYPE	PART NUMBER	AMOUNT (L)	BRAND	VISCOSITY/ TYPE	LITRES REQ
ENGINE OIL	E00007	5	FUCHS TITAN PRO R	15W - 50	9
BRAKE FLUID	BF0004	0.5	AP RACING	DOT4 - 600 RACING	0.8
CLUTCH FLUID	BF0004	0.5	AP RACING	DOT4 - 600 RACING	0.2
GEARBOX OIL	T00002	1	NEO SYNTHETICS	75W - 90	3.7
COOLANT	HW0001	1	TRIPLE QX (50:50 mix)	ALU ENGNIES -36°C FREEZING	10.5

RADICAL RXC V6:

OIL TYPE	PART NUMBER	AMOUNT (L)	BRAND	VISCOSITY/ TYPE	LITRES REQ
			FUCHS TITAN SUPER		
ENGINE OIL	EOoo38	5	SYN	5W - 30	10
BRAKE FLUID	BFooo4	0.5	AP RACING	DOT4 - 600 RACING	0.8
CLUTCH FLUID	BFooo4	0.5	AP RACING	DOT4 - 600 RACING	0.2
GEARBOX OIL	TO0010	3.7	NEO SYNTHETICS	75W - 90	3.7
COOLANT	HWoo1	1	TRIPLE QX (50:50 mix)	ALU ENGNIES -36°C FREEZING	13

RADICAL RXC V6 TURBO:

OIL TYPE	PART NUMBER	AMOUNT (L)	BRAND	VISCOSITY/ TYPE	LITRES REQ
			FUCHS TITAN SUPER		
ENGINE OIL	EOoo38	5	SYN	5W - 30	10
BRAKE FLUID	BF0004	0.5	AP RACING	DOT4 - 600 RACING	0.8
CLUTCH FLUID	BF0004	0.5	AP RACING	DOT4 - 600 RACING	0.2
GEARBOX OIL	TO0010	3.7	NEO SYNTHETICS	75W - 90	3.7
COOLANT	HWoo1	1	TRIPLE QX (50:50 mix)	ALU ENGNIES -36°C FREEZING	13
CC COOLANT	HWoo1	1	TRIPLE QX (50:50 mix)	ALU ENGNIES -36°C FREEZING	10.5

RADICAL RXC V8:

OIL TYPE	PART NUMBER	AMOUNT (L)	BRAND	VISCOSITY/ TYPE	LITRES REQ
ENGINE OIL	EO0007	5	FUCHS TITAN PRO R	15W - 50	7
BRAKE FLUID	BF0004	0.5	AP RACING	DOT4 - 600 RACING	0.8
CLUTCH FLUID	BF0004	0.5	AP RACING	DOT4 - 600 RACING	0.2
GEARBOX OIL	TO0010	3.7	NEO SYNTHETICS	75W - 90	3.7
COOLANT	HWoo1	1	TRIPLE QX (50:50 mix)	ALU ENGNIES -36°C FREEZING	11

SENSOR AND ACTUATOR CALIBRATION GUIDE - ALL MODELS

GEAR ACTUATOR SETUP - SR8 AND RXC

Radical Sportscars Parts department (contact details available at the end of the Mechanics Handbook) can provide a jig for setting the Actuator length on both the SR₃ and the SR8. This is simply done as shown in the pictures below:

Note: The RXC does not need the Actuator setting.

GEAR POSITION SENSOR SETUP

To set up the Gear Position Sensor on an RXC or RXC Spyder there is not a jig. It must be set manually using the Life Software program called "PTMon". The sensor is located on the right hand side of the Quaife 7 Speed Gearbox See picture below. To set the Gear Sensor, follow the steps below:

- Connect a laptop (using the Life Download Lead) and turn the master switch on. •
- Make sure the car is in Neutral •
- Open PTMon and view the sensor named GearV.
- Loosen the 2 retaining bolts, adjust the sensor until GearV reads 1.100V ± 0.05
- Secure the sensor by tightening the 2 bolts and check the GearV is still set to 1.100V ± 0.05

WINNER

SIMMS' MEDAL NORDSCHLEIFE LAP RECORD HOLDER

Page 64

To set up the Gear Position Sensor on an SR8 you must use the same Actuator Jig shown above in the "Gear Actuator Setup" section. This Jig is made from 2mm thick material to ensure the correct positioning of the Gear Sensor on an SR8 RX. The sensor is mounted on the back plate of the Quiafe 6 Speed Gearbox. The process is explained below:

- Remove the heatshield
- Loosen off the 2 securing bolts (do not remove)
- Place the actuator jig between the top of the sensor and the part of the gearbox case above it (See picture below) and tighten the bolts to secure in position
- Check the Gear sensor voltage using the Life Software program called "PTMon". On an SR8, in Neutral the gear voltage should be 1.051 ± 0.05.

Note: If not using the Actuator Jig then use PTMon to set the Neutral gear voltage as 1.051V ± 0.05 as shown in the "RXC Gear Position Sensor Setup" section.

Note: The SR₃ Gear Sensor is inside the gearbox and is set by RPE when the engine is built.

WHEEL SPEED SENSOR INSTALLATION AND SETUP – ALL MODELS

Radical Sportscars Parts department (contact details available at the end of the Mechanics Handbook) can provide a jig for setting the wheel speed sensor. Using a pair of 13mm spanners, set the wheel speed sensor no closer to the pickup point than the thickness of the Wheel Sensor Gauge. The pickup point is the end of the brake disc bolts on an SR₃/SR8. This is shown in the picture below. For an RXC the pickup point is the back of the drive pegs.

JENVEY DRIVE-BY-WIRE THROTTLE BODIES TPS SETUP

Part 1: Setting up the Throttle Body Sensors. TPS1A and TPS1B

With the cars master switch off, remove the power to the drive-by-wire actuator (motor) by disconnecting the two-pin SuperSeal connector.

- Connect a laptop (using the Life Download Lead) and turn the master switch on.
- Open Life Mon and select the sensors that you wish to view. These sensors areTPS1A and TPS1B. These are found under the section titled "Sensors" and sub-section "Throttle Position"
- Check that the butterflies are completely shut (visually), apply some force on the mechanism if required.

Adjust sensor so that TPS1B (Sensor on Throttle Bodies) reads 2% (+/- 0.1%)

• Adjust sensor so that TPS1A (sensor on the Actuator) reads 2% (+/- 0.1%)

Switch the Master Switch off and reconnect the power to the motor (the 2 pin SuperSeal connector that was unplugged at the start of this procedure).

Note: if the correct position cannot be achieved on the sensor (i.e. the sensor runs out of adjustment) then the sensor is faulty and must be replaced.

Note: with the power to the actuator re-connected tps1A and tps1B will no longer read 2%. This is normal, and is due to the cold start procedure. When the car is warm, tps will return to around 4%.

SIMMS' MEDAL NORDSCHLEIFE WINNER LAP RECORD HOLDER

•

TPS1B – sensor on bodies

Part 2: Setting up the Pedal Position Sensor. ppsA and ppsB

The second part to setting up the drive-by-wire throttle bodies is to set up the Pedal Position Sensor. The pedal position sensor has 2 sensors built in to one. This is a safety mechanism, if the 2 measures ever go out of alignment, the PPS defaults to zero as a safety precaution.

The pedal position sensor is located on the throttle pedal. Again, the Life Software program "LifeMon" is used to monitor the two pedal position sensors during calibration. These

are found in the same way as described in Part 1.

This picture shows all of the sensors that you need to monitor in LifeMon when setting up the Drive-by-Wire throttle bodies.

0.0 os ppsFinal	10070	6.5	6.2 100 d b 100
0.0 ppsA	4.907 ppsAV	0.0 ppsB	4.795 ppsBV

Follow the steps below to set up the Pedal Position Sensor. During this set up procedure ppsA and ppsB should match. If they ever do not match then the sensor is faulty and must be replaced:

- Remove the Pedal Position Return Stop.
- Loosen the two bolts holding the Pedal Position Sensor on the throttle pedal
- Turn the Pedal position sensor to set ppsA/ppsB to o.o
- Tighten the bolts to hold the sensor in place and ensure ppsA/ppsB are still o.o
- Adjust the throttle stop so that the max value for ppsA/ppsB at full throttle is 102.0
- Tighten the throttle stop.
- Finally check that ppsA and ppsB match throughout the range of travel

SIMMS' MEDAL NORDSCHLEIFE WINNER LAP RECORD HOLDER

Page 67

POWER STEERING SETUP AND CALIBRATION – RXC AND RXC SPYDER

There are 3 main components to the Radical EPAS (Electronic Power Assisted Steering) system that may need changing due to accident damage or part failure. These are as follows:

- 1. Power Steering Motor (located on the steering column)
- 2. EPAS ECU (located near the steering column)
- 3. Steering Angle Sensor (located on the steering rack)

Pt1: Replacing the Power Steering Motor and/or the EPAS ECU

There are some notes to be aware of when replacing these items to re-calibrate the system to ensure correct functioning of the EPAS system.

If the Power Steering Motor and/or the EPAS ECU need to be replaced then the system needs to be re-calibrated in the central position. To do this, follow these instructions:

- Lift the front of the car off the ground
- Put the steering wheel in the straight ahead position
- Cycle the master switch 7 times.

The EPAS warning LED should now flash rapidly a number of times. This shows that the system has successfully re calibrated.

Pt2: Replacing the Steering Angle Sensor

This steering angle sensor has two plugs on it. The signals go to both the EPAS ECU and the Aim Datalogger dash.

When replacing the steering angle sensor, it is important to set the sensor in the middle of its 5v range with the wheels straight ahead before fitting it to the steering rack. This is done by following these steps:

- Plug the sensor in to both of the plugs
- Connect a laptop to the car using the Aim download lead
- Open Race Studio
- View the live values for the sensors and monitor the "Steering angle Channel"
- Show mV values
- Set the sensor to 2500mV

The sensor is now ready to install in the rack. See picture for reference. Note, the wire coming out of the sensor points down.

Note: After the sensor is installed in the rack, follow the instructions above in Pt1 to Re-Calibrate the system.

TROUBLE-SHOOTING GUIDE

TROUBLE-SHOOTING GUIDE - STARTING - SR3 & SR8

TROUBLE-SHOOTING GUIDE – ENGINE MIS-FIRE


```
SIMMS' MEDAL NO
WINNER LAP RE
```

NORDSCHLEIFE

TROUBLESHOOTING UNEQUAL BANK TO BANK RUNNING ON V8 ENGINES

1. Are the throttle bodies out of balance?

Check and rebalance using a syncrometer. If a syncrometer is not available then manually pick the revs up and listen for a change in engine note as both banks begin firing. At this point both sets of exhaust primaries should warm up together.

2. Are the plug leads and coils connected in the correct orientation?

Please see the diagram of the plug lead and cylinder layout. The engine runs wasted spark ignition so leads 1&4 can be installed in either orientation as can leads 2&3.

- 3. If the spark plugs have recently been changed, are the caps missing from the plugs?
- 4. Download the ECU data and email in to the factory. If the car is fitted with a Life ECU the data can be downloaded and analysed. Software and instructions on how to do this can be found in the download section of <u>www.radicalperformanceengines.com</u>.

The "syncState" channel will show if the ECU is receiving a signal from the cam sensor. The channel will display 720° when the engine is running with a working cam sensor. It will display 360° if the engine is started and the ECU cannot detect the cam sensor.

- 5. Carry out a compression and leak down test on all 8 cylinders and send the results to the factory. Ensure that the throttle is held wide open and the ignition is switched off. 10-12 engine rotations should be enough to produce sufficient readings.
- 6. Check both banks exhaust systems for blockages or restrictions, especially if it is a non-Radical system.
- 7. Check the inlet cams in both banks are turning by removing the cam sensor from both banks of the engine. With the ignition switched off crank the engine over and look to see if the cams are turning.

SIMMS' MEDAL NORDSCHLEIFE WINNER LAP RECORD HOLDER

Flywheel

PADDLE SHIFT TROUBLE SHOOTING GUIDE

As of 2010, all radical cars that have the paddle shift option fitted new from the factory, will be fitted with a closed loop paddle shift system that is controlled by the engine ECU.

This system relies on a magnetic gear position sensor fitted internal on SR₃ Hayabusa engine, and on the end of the gearbox, nearest the rear of the car, on the SR8, and SR₃ SL

Most gear change problems can be diagnosed by downloading the engine management data, and viewing the items listed below -

paddleswitch	This parameter shows when the switch has been operated by the driver, and which paddle the driver pulled.
gear	This shows what gear the gearbox is in
gearv	This shows the signal that the sensor is sending back to the ECU. It is in direct relationship to the movement of the selector barrel. This can be used to check for interference to the sensor
	It can also be used to determine gear change actuator operation. If the paddleswitch has been operated but this channel shows no signs of change, then the gear change actuator isn't moving or there is a fault with the mechanic side of the gearbox i.e. selector mechanism is jammed.
tps	This shows throttle position. This can be viewed to determine whether the throttle is being blipped on the downshift.
	If there is no jump in the tps trace when the downshift paddle is being pulled, then 95% of the time, it won't downshift.
gearshift decision	This is a vital parameter to view when diagnosing paddle shift problems, as this shows you if the ECU has disallowed a gearshift.

There a number of settings in the ECU that are used to control the operation of the shift system.

An example is **TPS**. If the throttle is over 20% when the downshift paddle is pulled, then it won't change down. This is to prevent over-revving the engine.

gsp	This shows the pressure of the paddle shift system. If this is too low, the system won't operate. (This will show up in the gearshiftdecision data).
	It can also be used to determine a fault with one of the actuators. For example, if the gsp value drops when the paddle shift is operated, it indicates that the distribution valve block is operating. If the gsp doesn't drop, then the valve block is not operating. (
gsp control	This shows when the ECU has asked for the compressor to be turned on. If this is showing "on", but the compressor is not operating, then there is a problem with either the compressor relay, the connections, or the compressor itself is not operating.
rpm	Is the rpm is over 9200, the gear will disallow a downshift. This is to prevent damage to the engine.

vehicle speed/ flspeed/ fr/speed

These three channels are used to determine vehicle speed. On some models, the system is programmed to disallow downshifts into neutral while the car is moving. This is to prevent accidental mis-shifts into reverse

vbatthis channel is viewed to check the electrical supply to the system. (complete car electrical
system). If the charging system is not working, the paddle shift system (and many other
systems on the car) won't operate correctly.

Below are listed some other common problems that will affect the shift operation

PADDLE SHIFT TROUBLE SHOOTING GUIDE - UPSHIFT

wiring to steering wheel paddlesThis can be caused if the driver removes the steering wheel aggressively
without disconnecting the dash plug

Gear change actuator adjustment (as described above)

System leaks

Gear change valve block faulty

Paddle switch wiring on steering wheel damaged

system changes gear without paddle operation this can be caused by damage to the steering wheel paddle wiring.

Both upshift and downshift will affected by bad electrical connections, poor battery voltage, air leaks in the system, and interference or damage to the gear position sensor.

Any problems that are related to a specific gear i.e. works 3rd to 4th, but not any others, would usually indicate a mechanical fault within the gearbox.

Above all, any gear change issues should be addressed immediately, as failure to do so will cause gearbox and potentially engine damage and invalidate the engine warranty.

IF YOU REQUIRE ASSISTANCE WITH ANY GEAR-SHIFT RELATED PROBLEMS, YOU CAN EMAIL THE DOWNLOADED ENGINE DATA TO:

technical@RadicalSportscars.com and / or technical1@RadicalPerformanceEngines.com

wiring to steering wheel paddles	This can be caused if the driver removes the steering wheel aggressively without disconnecting the dash plug
throttle cable is slack	This must be kept adjusted as the blipper actuator pulls on the cable to achieve the throttle blip
gear shift actuator operation	The gear change actuator must be able to rotate freely on the bearings at both ends, but must have <u>NO</u> movement in the horizontal direction. i.e play in the bearings
gear change actuator adjustment	This must be set so that the actuator shaft has the same amount of travel in both directions.
	This can be set using a jig that can be obtained from Radical, or by using a steel ruler to measure the amount of travel. Adjustment is made using the rod end on the end of the shaft.
valve block faulty	This unit controls both the downshift part of the gear change actuator operation, and also operates the throttle blipper actuator.
interference or damage to gear sensor	At right is an example of inference of the gear position sensor. This can affect both upshift and downshift.

CONTACT DETAILS FOR KEY STAFF AT RADICALSPORTSCARS

Radical United Kingdom - Group Sales & Marketing Manager, SR1 Cup Coordinator

Roger Green roger.green@radicalsportscars.com +44 (0)1733 331616 ext. 217

Radical United Kingdom - Sales Executive

Jon White jon.white@radicalsportscars.com +44 (0)1733 331616 ext. 215

Radical United Kingdom - Export Sales Manager

Paul Dujon duj@radicalsportscars.com +44 (0)1733 331616 ext. 214

Radical United Kingdom - European & UK Championship Coordinator, Sales Administrator

Amanda Abbott amanda@radicalsportscars.com +44 (0)1733 331616 ext. 201

Radical United Kingdom - Marketing Executive

Will Brown willb@radicalsportscars.com +44 (0)1733 331616 ext. 210

Radical United Kingdom - Technical Support Engineer

James Scott +44 (0)7876 146854 technical@radicalsportscars.com

Radical United Kingdom - R&D Engineer/Test Driver

James Abbott james.abbott@radicalsportscars.com +44 (0)7769 273673

Radical United Kingdom - Parts Manager

Mike Beech stores@radicalsportscars.com +44 (0)1733 331616 ext. 262

Radical United Kingdom - Parts Sales & Spares Truck Administrator

Simon Townson simont@radicalsportscars.com +44 (0)1733 331616 ext. 212

Radical United Kingdom - RPE Technical Support Engineer

Neil Peterson technical1@radicalperformanceengines.com +44 (0) 1733 331919 ext. 241

Radical United Kingdom - RPE Technical Director

Ted Hurrell ted@radicalperformanceengines.com +44 (0) 1733 331919 ext. 216

SIMMS' MEDAL WINNER LA

NORDSCHLEIFE LAP RECORD HOLDER

PRE RACE / TEST CHECKLIST

Description	PRE Q	PRE R1	PRE R2
Ask Driver if there were any issues	🔲		
Check with a Senior Engineer if unsure of corrective action			
Bodywork			
Remove front & rear bodywork	🛛		
Inspect bodywork for damage	🛛		
Inspect front diffuser and rear diffuser	🗆		
Inspect underneath of side pods	🗆		
Remove rear diffuser & clean (If required)			
Engine			
While oil is still over 70°C, rev engine to 4000rpm for 4seconds,			
then check engine oil on max, or more depending on track	🛛		
Check alternator is charging and starter works correctly at the same time	🗖		
Charge battery (SR8 Only)	🗖		
Pump out fuel and note quantity	🗖		
Shake Test			
Check all corners for play in wheel bearings and joints	🛛		
Lightly shake wing and end plates	🛛		
Check steering for excessive play	🔲		
Wheels			
Remove wheels and clean			
Check valves are not leaking by using soapy water	🗖		
Inspect for cuts, flat spots and punctures	🛛		
Inspect for uneven wear	🛛		
Clean and lube wheel nuts	🛛		
Check Engine Data			
Oil surge	🛛		
TPS	🛛		
Charging	🛛		
Paddle shift faults	🛛		
Sensors	🔲		
Temps	🛛		
Low oil pressure (oil temp at 100° with 9000+ Rpm	🗆		
(oil pressure should be between 70-85 Psi)			
Suspension & Brakes		_	
Inspect suspension for cracks and clean	🛛		
Bleed brakes & check condition of braking system,	_	_	_
Also check for excess movement in the bias bar	🗌		
Spanner Check:	_	_	_
Upright, wishbones, pushrods, rockers			
Engine frame bolts			
Oil fittings			
Fuel line fittings	🗖		
Shifting mechanism bolts & bearing in actuator	🗖		

			Radioa
Exhaust bolts Temp sensor Wing frame and end plates Pedals/pads Mirrors – check with driver if altered Braking system Drive unit bolts Hose clips			
Engine Checks:		 	
Throttle bodies working correctly	🗖		
Throttle cable not too slack or tight + full throttle OK	🗖		
HT leads are secure			
Engine frame for cracks	🗖		
Water level	🗖		
Coat engine bay in water dispersant (i.e. WD40) if car has run in rain	🗖		
No play in drive coupling and lube (SR3 only)			
Alternator belt & bolts (SR8 only)			
Check engine frame bushes for play	_		
Drain catch tank if required	🗖		
Check alternator is charging when cold	🗖		
Gearbox Or Drive Unit And Paddle Shift Checks			
Check all gears work			
No air leaks on paddle shift system			
Check actuator			
Check clutch clears	🗖		
Check magnet for debris (SR8)	🗖		
No leaks	_		
Pre-Scrutineering:			
Fill out tyre form	🗖		
Transponder fitted and number given to Race Control	🗖		
Check lights are working (brake and fog)	🗖		
Make sure you know where drivers' kit and sign on paperwork is	🗖		
Final Checks:			
Vacuum cockpit, pedal box & side pods	🗖		
Set tyre pressures and fit valve caps	🗖		
Refit race wheels to car, torque wheels to 240lb/Ft and fit wheel clips	🗖		
Check fire extinguisher is armed	🗖		
Fit bodywork & clean	🗖		
Apply radiator blanking tape as required	🗖	□.	
Fuel to correct level			
Warmup engine and gearbox	🛛		
Make Sure Your Pit Trolley Is Loaded With Everything You Need			

Damper Settings					
FRONT	REAR				
Rebound					
High Speed Bump					
Low Speed Bump					
ALL SHOCKS TO BE SET AT FULL SOFT OVERNIGHT					
Damper Platform Set Up					
Duskvad Lanath					
Pushrod Length					
Trackrod Length					
Brake Bias					
How many turns from full forward?					
Rear Wing Settings					
Main Plane - Lowest=1, Highest=4 Flap - Lowest=1, Highe	st=11				
Mark Fuel Cap					

WORKSHOP CHECK SHEET

REF.	DESCRIPTION	COMPLETE
	CHECK BODYWORK FOR DAMAGE INCLUDING:	
	LOUVRES	
	INFILL PANEL	
	UNDERSIDE OF PODS AND SIDE SKIRTS	
1	THREADS IN BI-WING	
	CHECK POWER-STEERING WORKS WITH CAR ON THE FLOOR (IF FITTED)	
	REMOVE AND CLEAN REAR DIFFUSER	
	PUT CAR ON STAND	
	DISARM FIRE EXTINGUISHER	
	SHAKE TEST	
	CHECK ALL CORNERS FOR PLAY IN WHEEL BEARINGS AND JOINTS	
2	CHECK STEERING FOR EXCESSIVE PLAY	
	ROCKERS/SPHERICAL BEARING	
	FRONT DIFFUSER	
	REMOVE WHEELS & INSPECT TYRES FOR:	
	FLAT SPOTS	
	CUTS	🗖
2	PUNCTURES OR LEAKING VALVES	
	FIND OUT IF NEW TYRES ARE NEEDED	
	CLEAN AND FIT VALVE CAPS	
	CHECK DATA FOR:	_
	ENGINE HOURS	
	OVERREVS	
	OVER HEATED	
	FUEL PRESSURE	🗖
	OIL SURGE	🗖
3	LOW OIL PRESSURE (Oil temp at 100° with 9000+ RPM	
	OIL PRESSURE SHOULD BE BETWEEN 70-85 PSI)	
	PADDLE SHIFT FAULTS	
	CHARGING	
	TPS SET TO 4.0 AND WORKING CORRECTLY	
	FAULTY SENSORS	_
	SR3 - CHECK DRIVEUNIT AND DRIVE TRAIN:	
	INSPECT AND GREASE DRIVE SHAFTS	
	CHECK IF DRIVE UNIT IS READY FOR REFRESH (30-40 HOURS)	
	CLUTCH WORKING CORRECTLY	
	CHANGE RATIOS OR NOTE WHAT THEY ARE	
4A	CHECK FOWARD GEARS FOR TEETH MISSING AND PITTING	
	CHECK FOR CRACKS IN CASINGS	
	CHECK BREATHER IS STILL COMPLETE	
	CHECK MAGNET FOR DEBRIS	_
	HAS CORRECT OIL LEVEL	_
	REVERSE WORKS CORRECTLY	
L		

REF.	DESCRIPTION	COMPLETE
	SR8 AND RXC V8- CHECK GEARBOX AND DRIVETRAIN:	
	CHECK IF GEARBOX IS READY FOR REFRESH (40 HOURS)	
	INSPECT CROWN WHEEL AND PINION (EVERY 15 HOURS SR8 QTEC ONLY)	
	REMOVE DIFF COVER AND (7 SPEED QUAIFE ONLY)	_
	INSPECT BEVEL GEARS	
	INSPECT OIL PUMP	
	CHECK GEARS FOR MISSING TEETH AND PITTING	
4B		
	CHECK SELECTOR FORK PIN AND THAT THE DOG MOVES FREELY IN THE FORK	_
	MAKE SURE THE FORKS MOVE FREELY ON THE SELECTOR SHAFT	
	VISUALLY CHECK THE PINON PLATE BOLTS ARE TIGHT	
	CHECK SELECTOR BARREL MOVES FREELY	
	INSPECT AND GREASE DRIVE SHAFTS	
	CHECK CLUTCH ADJUSTMENT IS 49MM GAP BETWEEN PEDAL AND STOP	
	CHECK CONDITION OF BRAKING SYSTEM:	
	CHECK PADS ABOVE 5MM	
	BRAKE BALANCE BAR NOT TOO LOOSE OR TIGHT	
5	FRESH TEMP PAINT IF REQUIRED	
	CHECK FOR ANY HEAT CRACKS THAT GO TO THE TOP OF DISC	
	CHANGE CALIPER SEALS EVERY(6 MOUTHS IF NECESSARY)	
	PRESSURE BLEED BRAKES, CLUTCH IF NECESSARY	······
	CLEAN CORNERS WHILE CHECKING FOR CRACKS: DO NOT USE BRAKE CLEANER ON THE SHOCKS	
	UPRIGHT	
	WISHBONES	
6	NIK LINKS	
Ū	CHASSIS	
	WISHBONE PICK UP POINTS	
	CLEAN AND LUBE WHEEL NUTS	
	MAKE SURE THE CORRECT PRE LOAD IS WRITTEN ON THE TOP OF THE SHOCK	
	SPANNER CHECK:	
	UPRIGHTS, WISHBONES, PUSHRODS	
	ROCKERS , STEERING , CALIPER	
	ENGINE FRAME BOLTS	
	OIL FITTING	
	FUEL LINE FITTINGS	
	TEMP SENSOR	🗖
7	PEDALS AND STEERING	
	DRIVE UNIT BOLTS/GEARBOX BOLTS/DRIVE SHAFT BOLTS	🗖
	HOSE CLIPS	🗖
	LOCATING BOLTS ON DISCS ARE NOT WORN OR LOOSE	
	FRONT DIFFUSER STAYS	
	AIR JACKS AND NOT LEAKING	
	BRAKES SYSTEM	

	SR3- CHECK & CLEAN ENGINE BAY:	
	CRACKS IN ENGINE FRAMES & BUSHES FOR WEAR	🗖
	CRACKS IN ENGINE CASES	
	NO PLAY IN DRIVE COUPLING OR CRACKS THEN LUBE	
8A	EXHAUSTS ARE TIGHT	🗖
	DRAIN CATCH TANK	
	CLEAN OUT AIR FILTER CHECKING NUTS ARE TIGHT IN AIR BOX	🗖
	THROTTLE CABLE NOT TOO SLACK AND GETS FULL THROTTLE	🗖
	COOLANT PIPES ARE NOT WEARING THROUGH ON ANYTHING	🗖
	SR8 AND RXC V8- CHECK & CLEAN ENGINE BAY:	_
	CRACKS IN FRONT ENGINE & BUSHES FOR WEAR	
	CHECK ALTERNATER BELT + TENSIONER + BOLTS	
	CRACKS IN ENGINE CASES	
8B	EXHAUSTS ARE TIGHT	🔲
	DRAIN CATCH TANK	
	CLEAN OUT AIR FILTER CHECKING NUTS ARE TIGHT IN AIR BOX	
	THROTTLE CABLE NOT TOO SLACK AND FULL THROTTLE	
	COOLANT PIPES ARE NOT WEARING THROUGH ON ANYTHING	🔲
	CHECK WIRING AND PLUGS:	-
	UNDER DASH (IGNITION SWITCH/MASTER SWITCH)	
9	ENGINE BAY	
5	HT LEADS	
	CONNECTORS	_
	SPEED SENSOR (CORRECT ADJUSTMENT AND TIGHT)	📙
	CHECK PADDLE SHIFT: CHECK FOR LEAKS	
	GREASE ACTUATOR BEARING	
	CHECK CORRECT LENGTH OF ACTUATOR	_
10	AIR COMPRESSOR FOR EXCESSIVE NOISE & WATER	
	GO THROUGH ALL THE GEARS	_
	CHECK SPACING ON GEAR POSITION SENSOR (QTEC ONLY)	_
		🖵
	SR3 - CHANGE OIL AND FILTER	-
	REMOVE MAIN FEED PIPE	🖵
11A	THEN RELOCK WIRE BUNG WHEN FINISHED	
1171	REMOVE FILTER BY SLACKENING THE HOSE CLIP	
	FILL ENGINE WITH OIL AND REMOVE SPARK PLUGS FOR DRY CRANKING,	_
	CHECKING THE PLUGS ARE OK AT THE SAME TIME	🗖
	SR8 AND RXC V8 – CHANGE OIL AND FILTER	
	REMOVE THE 4 10MM BUNGS ON BOTTOM OF CRANK CASE	
	REMOVE 17MM DRAIN BUNG ON THE SIDE OF THE SUMP AND CHECK MAGNET FOR DEBRIS THEN R	
11B	WIRE THE 4 M6 BOLTS	
	REMOVE FILTER BY SLACKENING THE HOSE CLIP	🗖
	FILL ENGINE WITH OIL AND REMOVE SPARK PLUGS FOR DRY CRANKING CHECKING THE PLUGS ARI	_
	THE SAME TIME	🔟

	RUN ENGINE UP, CHECK OIL LEVEL:
	CHECK COOLANT LEVEL
	START ENGINE CHECK TPS AND BALANCE BODIES
	WARM OIL TO BETWEEN 30°C & 40°C
	SR8 AND RXC V8 ONLY
12	RUN THE CAR THROUGH THE GEARS WITH IT RUNNING
	CHECK THE AIR CON WORKS (IF FITTED)
	REV TO 4000RPM FOR 4 SECONDS TO SCAVENGE OIL
	QUICKLY SHUT OFF AND CHECK OIL
	OIL LEVEL SHOULD BE IN THE MIDDLE OF MIN AND MAX
	CHECK AIM SYSTEM:
	CHECK ALL SENSORS
13	
	MAKE SURE LATEST UPDATE DASH STILL WORKS AFTERWARDS
	ZERO DASH –MILES AND HOURS
	BEACON POINTING THE RIGHT WAY FOR THE TRACK
14	DRAIN FUEL TO MEASURE AMOUNT
	SAFETY CHECKS
15	_
15	CHECK THAT BELTS ARE SECURE, NO TEARS, WEAR MARKS & WITHIN EXPIRATION DATE CHECK FIRE EXTINGUISHER IS IN DATE AND NOT EMPTY
15	CHECK THAT BELTS ARE SECURE, NO TEARS, WEAR MARKS & WITHIN EXPIRATION DATE 🗖
	CHECK THAT BELTS ARE SECURE, NO TEARS, WEAR MARKS & WITHIN EXPIRATION DATE CHECK FIRE EXTINGUISHER IS IN DATE AND NOT EMPTY SET DOWN ON CAR
15 16A	CHECK THAT BELTS ARE SECURE, NO TEARS, WEAR MARKS & WITHIN EXPIRATION DATE CHECK FIRE EXTINGUISHER IS IN DATE AND NOT EMPTY
16A	CHECK THAT BELTS ARE SECURE, NO TEARS, WEAR MARKS & WITHIN EXPIRATION DATE CHECK FIRE EXTINGUISHER IS IN DATE AND NOT EMPTY
	CHECK THAT BELTS ARE SECURE, NO TEARS, WEAR MARKS & WITHIN EXPIRATION DATE CHECK FIRE EXTINGUISHER IS IN DATE AND NOT EMPTY SET DOWN ON CAR
16A 16B	CHECK THAT BELTS ARE SECURE, NO TEARS, WEAR MARKS & WITHIN EXPIRATION DATE CHECK THE EXTINGUISHER IS IN DATE AND NOT EMPTY
16A	CHECK THAT BELTS ARE SECURE, NO TEARS, WEAR MARKS & WITHIN EXPIRATION DATE CHECK THAT BELTS ARE SECURE, NO TEARS, WEAR MARKS & WITHIN EXPIRATION DATE CHECK FIRE EXTINGUISHER IS IN DATE AND NOT EMPTY
16A 16B	CHECK THAT BELTS ARE SECURE, NO TEARS, WEAR MARKS & WITHIN EXPIRATION DATE CHECK THE EXTINGUISHER IS IN DATE AND NOT EMPTY
16A 16B 17A	CHECK THAT BELTS ARE SECURE, NO TEARS, WEAR MARKS & WITHIN EXPIRATION DATE CHECK FIRE EXTINGUISHER IS IN DATE AND NOT EMPTY
16A 16B 17A	CHECK THAT BELTS ARE SECURE, NO TEARS, WEAR MARKS & WITHIN EXPIRATION DATE CHECK THAT BELTS ARE SECURE, NO TEARS, WEAR MARKS & WITHIN EXPIRATION DATE CHECK FIRE EXTINGUISHER IS IN DATE AND NOT EMPTY
16A 16B 17A 17B	CHECK THAT BELTS ARE SECURE, NO TEARS, WEAR MARKS & WITHIN EXPIRATION DATE CHECK FIRE EXTINGUISHER IS IN DATE AND NOT EMPTY
16A 16B 17A 17B	CHECK THAT BELTS ARE SECURE, NO TEARS, WEAR MARKS & WITHIN EXPIRATION DATE CHECK THAT BELTS ARE SECURE, NO TEARS, WEAR MARKS & WITHIN EXPIRATION DATE CHECK FIRE EXTINGUISHER IS IN DATE AND NOT EMPTY
16A 16B 17A 17B	CHECK THAT BELTS ARE SECURE, NO TEARS, WEAR MARKS & WITHIN EXPIRATION DATE CHECK THAT BELTS ARE SECURE, NO TEARS, WEAR MARKS & WITHIN EXPIRATION DATE CHECK FIRE EXTINGUISHER IS IN DATE AND NOT EMPTY
16A 16B 17A 17B	CHECK THAT BELTS ARE SECURE, NO TEARS, WEAR MARKS & WITHIN EXPIRATION DATE CHECK FIRE EXTINGUISHER IS IN DATE AND NOT EMPTY
16A 16B 17A 17B	CHECK THAT BELTS ARE SECURE, NO TEARS, WEAR MARKS & WITHIN EXPIRATION DATE CHECK THAT BELTS ARE SECURE, NO TEARS, WEAR MARKS & WITHIN EXPIRATION DATE CHECK FIRE EXTINGUISHER IS IN DATE AND NOT EMPTY

Page 82

SR1 SETUP SHEET

SIMMS' MEDAL NORDSCHLEIFE WINNER LAP RECORD HOLDER

SR3 RS SETUP SHEET

Note: When carrying out set-up on flat-patch, set tyre pressures to hot pressure. Ensure that they are returned to cold pressures after setup is complete.

SR3 RSX SETUP SHEET

after setup is complete.

Note: When carrying out set-up on flat-patch, set tyre pressures to hot pressure. Ensure that they are returned to cold pressures after setup is complete.

SIMMS' MEDAL NORDSCHLEIFE WINNER LAP RECORD HOLDER

returned to cold pressures after setup is complete.

SIMMS' MEDAL NORDSCHLEIFE WINNER LAP RECORD HOLDER

RXC FUSE BOARD LAYOUT

FUSE	RATING	FUNCTION	RELAY	FUNCTION
F1	15A	12V SOCKET	K1	ACCESSORY POWER RELAY
F2	5A	ACCESSORY +VE	К2	STARTER SOLENOID
F3	3A	B+ HAZARD SW / INT LIGHTS	K3	IGNITION +VE
F4	20A	STARTER SOLENOID	K4	DIP BEAM
F5	5A	IGNITION +VE	K5	MAIN BEAM
F6	10A	DIP BEAM	K6	PARK BRAKE
F7	10A	MAIN BEAM	K7	DISPLAY BACKLIGHTING
F8	7.5A	64P B+	K8	CONDENSOR FAN
F9		64P B+	К9	REVERSE LIGHTS
F10	7.5A	64P B+	K10	IGNITION POWER RELAY
F11	7.5A	64P B+	K11	IGNITION POWER RELAY
F12	10A	CONDENSOR FAN	K12	AIR CONDITIONING
F13	5A	REVERSE LIGHTS	K13	HORN
F14	60A	POWER STEERING	K14	HEATED SCREEN
F15	15A	IGNITION +VE (SPARE)	K15	WIPER SLOW
F16	5A	IMMOBILISER	K16	WIPER FAST
F17	7.5A	B+ (SPARE)	K17	GEAR COMPRESSOR
F18	10A		K18	IGNITION CONTROL
F19	7.5A	HORN	K19	FUEL
F20	20A	HEATED SCREEN	K20	FAN
F21	15A	CAMERA	K21	FAN 2
F22	15A	ACCESSORY / IGNITION +VE 22P	K22	LOAD DUMP
F23	30A	WIPERS	K23	ECU ANALOGUE GROUND
F24	15A	ACCESSORY +VE (SPARE)		

Jan 2014 onwards

Pre Jan 2014

DOCUMENT REVISION HISTORY

2015-10-27 – V4.3 JS – V6 straight ratio correction, RXC fuse board diagrams added, staff contacts updated